old-www/LDP/abs/html/randomvar.html

1315 lines
26 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML
><HEAD
><TITLE
>$RANDOM: generate random integer</TITLE
><META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.7"><LINK
REL="HOME"
TITLE="Advanced Bash-Scripting Guide"
HREF="index.html"><LINK
REL="UP"
TITLE="Another Look at Variables"
HREF="variables2.html"><LINK
REL="PREVIOUS"
TITLE="Typing variables: declare or
typeset"
HREF="declareref.html"><LINK
REL="NEXT"
TITLE="Manipulating Variables"
HREF="manipulatingvars.html"></HEAD
><BODY
CLASS="SECT1"
BGCOLOR="#FFFFFF"
TEXT="#000000"
LINK="#0000FF"
VLINK="#840084"
ALINK="#0000FF"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="3"
ALIGN="center"
>Advanced Bash-Scripting Guide: </TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="bottom"
><A
HREF="declareref.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="80%"
ALIGN="center"
VALIGN="bottom"
>Chapter 9. Another Look at Variables</TD
><TD
WIDTH="10%"
ALIGN="right"
VALIGN="bottom"
><A
HREF="manipulatingvars.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="SECT1"
><H1
CLASS="SECT1"
><A
NAME="RANDOMVAR"
></A
>9.3. $RANDOM: generate random integer</H1
><TABLE
BORDER="0"
WIDTH="100%"
CELLSPACING="0"
CELLPADDING="0"
CLASS="EPIGRAPH"
><TR
><TD
WIDTH="45%"
>&nbsp;</TD
><TD
WIDTH="45%"
ALIGN="LEFT"
VALIGN="TOP"
><I
><P
><I
>Anyone who attempts to generate random numbers by
deterministic means is, of course, living in a state of
sin.</I
></P
><P
><I
>--John von Neumann</I
></P
></I
></TD
></TR
></TABLE
><P
><A
NAME="RANDOMVAR01"
></A
></P
><P
><TT
CLASS="VARNAME"
>$RANDOM</TT
> is an internal Bash <A
HREF="functions.html#FUNCTIONREF"
>function</A
> (not a constant) that
returns a <I
CLASS="FIRSTTERM"
>pseudorandom</I
>
<A
NAME="AEN5817"
HREF="#FTN.AEN5817"
><SPAN
CLASS="footnote"
>[1]</SPAN
></A
>
integer in the range 0 - 32767. It should
<TT
CLASS="REPLACEABLE"
><I
>not</I
></TT
> be used to generate an encryption
key.</P
><DIV
CLASS="EXAMPLE"
><A
NAME="EX21"
></A
><P
><B
>Example 9-11. Generating random numbers</B
></P
><TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>#!/bin/bash
# $RANDOM returns a different random integer at each invocation.
# Nominal range: 0 - 32767 (signed 16-bit integer).
MAXCOUNT=10
count=1
echo
echo "$MAXCOUNT random numbers:"
echo "-----------------"
while [ "$count" -le $MAXCOUNT ] # Generate 10 ($MAXCOUNT) random integers.
do
number=$RANDOM
echo $number
let "count += 1" # Increment count.
done
echo "-----------------"
# If you need a random int within a certain range, use the 'modulo' operator.
# This returns the remainder of a division operation.
RANGE=500
echo
number=$RANDOM
let "number %= $RANGE"
# ^^
echo "Random number less than $RANGE --- $number"
echo
# If you need a random integer greater than a lower bound,
#+ then set up a test to discard all numbers below that.
FLOOR=200
number=0 #initialize
while [ "$number" -le $FLOOR ]
do
number=$RANDOM
done
echo "Random number greater than $FLOOR --- $number"
echo
# Let's examine a simple alternative to the above loop, namely
# let "number = $RANDOM + $FLOOR"
# That would eliminate the while-loop and run faster.
# But, there might be a problem with that. What is it?
# Combine above two techniques to retrieve random number between two limits.
number=0 #initialize
while [ "$number" -le $FLOOR ]
do
number=$RANDOM
let "number %= $RANGE" # Scales $number down within $RANGE.
done
echo "Random number between $FLOOR and $RANGE --- $number"
echo
# Generate binary choice, that is, "true" or "false" value.
BINARY=2
T=1
number=$RANDOM
let "number %= $BINARY"
# Note that let "number &#62;&#62;= 14" gives a better random distribution
#+ (right shifts out everything except last binary digit).
if [ "$number" -eq $T ]
then
echo "TRUE"
else
echo "FALSE"
fi
echo
# Generate a toss of the dice.
SPOTS=6 # Modulo 6 gives range 0 - 5.
# Incrementing by 1 gives desired range of 1 - 6.
# Thanks, Paulo Marcel Coelho Aragao, for the simplification.
die1=0
die2=0
# Would it be better to just set SPOTS=7 and not add 1? Why or why not?
# Tosses each die separately, and so gives correct odds.
let "die1 = $RANDOM % $SPOTS +1" # Roll first one.
let "die2 = $RANDOM % $SPOTS +1" # Roll second one.
# Which arithmetic operation, above, has greater precedence --
#+ modulo (%) or addition (+)?
let "throw = $die1 + $die2"
echo "Throw of the dice = $throw"
echo
exit 0</PRE
></FONT
></TD
></TR
></TABLE
></DIV
><DIV
CLASS="EXAMPLE"
><A
NAME="PICKCARD"
></A
><P
><B
>Example 9-12. Picking a random card from a deck</B
></P
><TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>#!/bin/bash
# pick-card.sh
# This is an example of choosing random elements of an array.
# Pick a card, any card.
Suites="Clubs
Diamonds
Hearts
Spades"
Denominations="2
3
4
5
6
7
8
9
10
Jack
Queen
King
Ace"
# Note variables spread over multiple lines.
suite=($Suites) # Read into array variable.
denomination=($Denominations)
num_suites=${#suite[*]} # Count how many elements.
num_denominations=${#denomination[*]}
echo -n "${denomination[$((RANDOM%num_denominations))]} of "
echo ${suite[$((RANDOM%num_suites))]}
# $bozo sh pick-cards.sh
# Jack of Clubs
# Thank you, "jipe," for pointing out this use of $RANDOM.
exit 0</PRE
></FONT
></TD
></TR
></TABLE
></DIV
><P
><A
NAME="BROWNIANREF"
></A
></P
><DIV
CLASS="EXAMPLE"
><A
NAME="BROWNIAN"
></A
><P
><B
>Example 9-13. Brownian Motion Simulation</B
></P
><TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>#!/bin/bash
# brownian.sh
# Author: Mendel Cooper
# Reldate: 10/26/07
# License: GPL3
# ----------------------------------------------------------------
# This script models Brownian motion:
#+ the random wanderings of tiny particles in a fluid,
#+ as they are buffeted by random currents and collisions.
#+ This is colloquially known as the "Drunkard's Walk."
# It can also be considered as a stripped-down simulation of a
#+ Galton Board, a slanted board with a pattern of pegs,
#+ down which rolls a succession of marbles, one at a time.
#+ At the bottom is a row of slots or catch basins in which
#+ the marbles come to rest at the end of their journey.
# Think of it as a kind of bare-bones Pachinko game.
# As you see by running the script,
#+ most of the marbles cluster around the center slot.
#+ This is consistent with the expected binomial distribution.
# As a Galton Board simulation, the script
#+ disregards such parameters as
#+ board tilt-angle, rolling friction of the marbles,
#+ angles of impact, and elasticity of the pegs.
# To what extent does this affect the accuracy of the simulation?
# ----------------------------------------------------------------
PASSES=500 # Number of particle interactions / marbles.
ROWS=10 # Number of "collisions" (or horiz. peg rows).
RANGE=3 # 0 - 2 output range from $RANDOM.
POS=0 # Left/right position.
RANDOM=$$ # Seeds the random number generator from PID
#+ of script.
declare -a Slots # Array holding cumulative results of passes.
NUMSLOTS=21 # Number of slots at bottom of board.
Initialize_Slots () { # Zero out all elements of the array.
for i in $( seq $NUMSLOTS )
do
Slots[$i]=0
done
echo # Blank line at beginning of run.
}
Show_Slots () {
echo; echo
echo -n " "
for i in $( seq $NUMSLOTS ) # Pretty-print array elements.
do
printf "%3d" ${Slots[$i]} # Allot three spaces per result.
done
echo # Row of slots:
echo " |__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|"
echo " ||"
echo # Note that if the count within any particular slot exceeds 99,
#+ it messes up the display.
# Running only(!) 500 passes usually avoids this.
}
Move () { # Move one unit right / left, or stay put.
Move=$RANDOM # How random is $RANDOM? Well, let's see ...
let "Move %= RANGE" # Normalize into range of 0 - 2.
case "$Move" in
0 ) ;; # Do nothing, i.e., stay in place.
1 ) ((POS--));; # Left.
2 ) ((POS++));; # Right.
* ) echo -n "Error ";; # Anomaly! (Should never occur.)
esac
}
Play () { # Single pass (inner loop).
i=0
while [ "$i" -lt "$ROWS" ] # One event per row.
do
Move
((i++));
done
SHIFT=11 # Why 11, and not 10?
let "POS += $SHIFT" # Shift "zero position" to center.
(( Slots[$POS]++ )) # DEBUG: echo $POS
# echo -n "$POS "
}
Run () { # Outer loop.
p=0
while [ "$p" -lt "$PASSES" ]
do
Play
(( p++ ))
POS=0 # Reset to zero. Why?
done
}
# --------------
# main ()
Initialize_Slots
Run
Show_Slots
# --------------
exit $?
# Exercises:
# ---------
# 1) Show the results in a vertical bar graph, or as an alternative,
#+ a scattergram.
# 2) Alter the script to use /dev/urandom instead of $RANDOM.
# Will this make the results more random?
# 3) Provide some sort of "animation" or graphic output
# for each marble played.</PRE
></FONT
></TD
></TR
></TABLE
></DIV
><P
> <EM
>Jipe</EM
> points out a set of techniques for
generating random numbers within a range.
<TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
># Generate random number between 6 and 30.
rnumber=$((RANDOM%25+6))
# Generate random number in the same 6 - 30 range,
#+ but the number must be evenly divisible by 3.
rnumber=$(((RANDOM%30/3+1)*3))
# Note that this will not work all the time.
# It fails if $RANDOM%30 returns 0.
# Frank Wang suggests the following alternative:
rnumber=$(( RANDOM%27/3*3+6 ))</PRE
></FONT
></TD
></TR
></TABLE
>
</P
><P
> <EM
>Bill Gradwohl</EM
> came up with an improved
formula that works for positive numbers.
<TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>rnumber=$(((RANDOM%(max-min+divisibleBy))/divisibleBy*divisibleBy+min))</PRE
></FONT
></TD
></TR
></TABLE
>
</P
><P
>Here Bill presents a versatile function that returns
a random number between two specified values.</P
><DIV
CLASS="EXAMPLE"
><A
NAME="RANDOMBETWEEN"
></A
><P
><B
>Example 9-14. Random between values</B
></P
><TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>#!/bin/bash
# random-between.sh
# Random number between two specified values.
# Script by Bill Gradwohl, with minor modifications by the document author.
# Corrections in lines 187 and 189 by Anthony Le Clezio.
# Used with permission.
randomBetween() {
# Generates a positive or negative random number
#+ between $min and $max
#+ and divisible by $divisibleBy.
# Gives a "reasonably random" distribution of return values.
#
# Bill Gradwohl - Oct 1, 2003
syntax() {
# Function embedded within function.
echo
echo "Syntax: randomBetween [min] [max] [multiple]"
echo
echo -n "Expects up to 3 passed parameters, "
echo "but all are completely optional."
echo "min is the minimum value"
echo "max is the maximum value"
echo -n "multiple specifies that the answer must be "
echo "a multiple of this value."
echo " i.e. answer must be evenly divisible by this number."
echo
echo "If any value is missing, defaults area supplied as: 0 32767 1"
echo -n "Successful completion returns 0, "
echo "unsuccessful completion returns"
echo "function syntax and 1."
echo -n "The answer is returned in the global variable "
echo "randomBetweenAnswer"
echo -n "Negative values for any passed parameter are "
echo "handled correctly."
}
local min=${1:-0}
local max=${2:-32767}
local divisibleBy=${3:-1}
# Default values assigned, in case parameters not passed to function.
local x
local spread
# Let's make sure the divisibleBy value is positive.
[ ${divisibleBy} -lt 0 ] &#38;&#38; divisibleBy=$((0-divisibleBy))
# Sanity check.
if [ $# -gt 3 -o ${divisibleBy} -eq 0 -o ${min} -eq ${max} ]; then
syntax
return 1
fi
# See if the min and max are reversed.
if [ ${min} -gt ${max} ]; then
# Swap them.
x=${min}
min=${max}
max=${x}
fi
# If min is itself not evenly divisible by $divisibleBy,
#+ then fix the min to be within range.
if [ $((min/divisibleBy*divisibleBy)) -ne ${min} ]; then
if [ ${min} -lt 0 ]; then
min=$((min/divisibleBy*divisibleBy))
else
min=$((((min/divisibleBy)+1)*divisibleBy))
fi
fi
# If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.
if [ $((max/divisibleBy*divisibleBy)) -ne ${max} ]; then
if [ ${max} -lt 0 ]; then
max=$((((max/divisibleBy)-1)*divisibleBy))
else
max=$((max/divisibleBy*divisibleBy))
fi
fi
# ---------------------------------------------------------------------
# Now, to do the real work.
# Note that to get a proper distribution for the end points,
#+ the range of random values has to be allowed to go between
#+ 0 and abs(max-min)+divisibleBy, not just abs(max-min)+1.
# The slight increase will produce the proper distribution for the
#+ end points.
# Changing the formula to use abs(max-min)+1 will still produce
#+ correct answers, but the randomness of those answers is faulty in
#+ that the number of times the end points ($min and $max) are returned
#+ is considerably lower than when the correct formula is used.
# ---------------------------------------------------------------------
spread=$((max-min))
# Omair Eshkenazi points out that this test is unnecessary,
#+ since max and min have already been switched around.
[ ${spread} -lt 0 ] &#38;&#38; spread=$((0-spread))
let spread+=divisibleBy
randomBetweenAnswer=$(((RANDOM%spread)/divisibleBy*divisibleBy+min))
return 0
# However, Paulo Marcel Coelho Aragao points out that
#+ when $max and $min are not divisible by $divisibleBy,
#+ the formula fails.
#
# He suggests instead the following formula:
# rnumber = $(((RANDOM%(max-min+1)+min)/divisibleBy*divisibleBy))
}
# Let's test the function.
min=-14
max=20
divisibleBy=3
# Generate an array of expected answers and check to make sure we get
#+ at least one of each answer if we loop long enough.
declare -a answer
minimum=${min}
maximum=${max}
if [ $((minimum/divisibleBy*divisibleBy)) -ne ${minimum} ]; then
if [ ${minimum} -lt 0 ]; then
minimum=$((minimum/divisibleBy*divisibleBy))
else
minimum=$((((minimum/divisibleBy)+1)*divisibleBy))
fi
fi
# If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.
if [ $((maximum/divisibleBy*divisibleBy)) -ne ${maximum} ]; then
if [ ${maximum} -lt 0 ]; then
maximum=$((((maximum/divisibleBy)-1)*divisibleBy))
else
maximum=$((maximum/divisibleBy*divisibleBy))
fi
fi
# We need to generate only positive array subscripts,
#+ so we need a displacement that that will guarantee
#+ positive results.
disp=$((0-minimum))
for ((i=${minimum}; i&#60;=${maximum}; i+=divisibleBy)); do
answer[i+disp]=0
done
# Now loop a large number of times to see what we get.
loopIt=1000 # The script author suggests 100000,
#+ but that takes a good long while.
for ((i=0; i&#60;${loopIt}; ++i)); do
# Note that we are specifying min and max in reversed order here to
#+ make the function correct for this case.
randomBetween ${max} ${min} ${divisibleBy}
# Report an error if an answer is unexpected.
[ ${randomBetweenAnswer} -lt ${min} -o ${randomBetweenAnswer} -gt ${max} ] \
&#38;&#38; echo MIN or MAX error - ${randomBetweenAnswer}!
[ $((randomBetweenAnswer%${divisibleBy})) -ne 0 ] \
&#38;&#38; echo DIVISIBLE BY error - ${randomBetweenAnswer}!
# Store the answer away statistically.
answer[randomBetweenAnswer+disp]=$((answer[randomBetweenAnswer+disp]+1))
done
# Let's check the results
for ((i=${minimum}; i&#60;=${maximum}; i+=divisibleBy)); do
[ ${answer[i+disp]} -eq 0 ] \
&#38;&#38; echo "We never got an answer of $i." \
|| echo "${i} occurred ${answer[i+disp]} times."
done
exit 0</PRE
></FONT
></TD
></TR
></TABLE
></DIV
><P
>Just how random is <TT
CLASS="VARNAME"
>$RANDOM</TT
>? The best
way to test this is to write a script that tracks
the distribution of <SPAN
CLASS="QUOTE"
>"random"</SPAN
> numbers
generated by <TT
CLASS="VARNAME"
>$RANDOM</TT
>. Let's roll a
<TT
CLASS="VARNAME"
>$RANDOM</TT
> die a few times . . .</P
><DIV
CLASS="EXAMPLE"
><A
NAME="RANDOMTEST"
></A
><P
><B
>Example 9-15. Rolling a single die with RANDOM</B
></P
><TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>#!/bin/bash
# How random is RANDOM?
RANDOM=$$ # Reseed the random number generator using script process ID.
PIPS=6 # A die has 6 pips.
MAXTHROWS=600 # Increase this if you have nothing better to do with your time.
throw=0 # Number of times the dice have been cast.
ones=0 # Must initialize counts to zero,
twos=0 #+ since an uninitialized variable is null, NOT zero.
threes=0
fours=0
fives=0
sixes=0
print_result ()
{
echo
echo "ones = $ones"
echo "twos = $twos"
echo "threes = $threes"
echo "fours = $fours"
echo "fives = $fives"
echo "sixes = $sixes"
echo
}
update_count()
{
case "$1" in
0) ((ones++));; # Since a die has no "zero", this corresponds to 1.
1) ((twos++));; # And this to 2.
2) ((threes++));; # And so forth.
3) ((fours++));;
4) ((fives++));;
5) ((sixes++));;
esac
}
echo
while [ "$throw" -lt "$MAXTHROWS" ]
do
let "die1 = RANDOM % $PIPS"
update_count $die1
let "throw += 1"
done
print_result
exit $?
# The scores should distribute evenly, assuming RANDOM is random.
# With $MAXTHROWS at 600, all should cluster around 100,
#+ plus-or-minus 20 or so.
#
# Keep in mind that RANDOM is a ***pseudorandom*** generator,
#+ and not a spectacularly good one at that.
# Randomness is a deep and complex subject.
# Sufficiently long "random" sequences may exhibit
#+ chaotic and other "non-random" behavior.
# Exercise (easy):
# ---------------
# Rewrite this script to flip a coin 1000 times.
# Choices are "HEADS" and "TAILS."</PRE
></FONT
></TD
></TR
></TABLE
></DIV
><P
>As we have seen in the last example, it is best to
<I
CLASS="FIRSTTERM"
>reseed</I
> the <TT
CLASS="PARAMETER"
><I
>RANDOM</I
></TT
>
generator each time it is invoked. Using the same seed
for <TT
CLASS="PARAMETER"
><I
>RANDOM</I
></TT
> repeats the same series
of numbers.
<A
NAME="AEN5857"
HREF="#FTN.AEN5857"
><SPAN
CLASS="footnote"
>[2]</SPAN
></A
>
(This mirrors the behavior of the
<TT
CLASS="REPLACEABLE"
><I
>random()</I
></TT
> function in
<I
CLASS="FIRSTTERM"
>C</I
>.)</P
><DIV
CLASS="EXAMPLE"
><A
NAME="SEEDINGRANDOM"
></A
><P
><B
>Example 9-16. Reseeding RANDOM</B
></P
><TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>#!/bin/bash
# seeding-random.sh: Seeding the RANDOM variable.
# v 1.1, reldate 09 Feb 2013
MAXCOUNT=25 # How many numbers to generate.
SEED=
random_numbers ()
{
local count=0
local number
while [ "$count" -lt "$MAXCOUNT" ]
do
number=$RANDOM
echo -n "$number "
let "count++"
done
}
echo; echo
SEED=1
RANDOM=$SEED # Setting RANDOM seeds the random number generator.
echo "Random seed = $SEED"
random_numbers
RANDOM=$SEED # Same seed for RANDOM . . .
echo; echo "Again, with same random seed ..."
echo "Random seed = $SEED"
random_numbers # . . . reproduces the exact same number series.
#
# When is it useful to duplicate a "random" series?
echo; echo
SEED=2
RANDOM=$SEED # Trying again, but with a different seed . . .
echo "Random seed = $SEED"
random_numbers # . . . gives a different number series.
echo; echo
# RANDOM=$$ seeds RANDOM from process id of script.
# It is also possible to seed RANDOM from 'time' or 'date' commands.
# Getting fancy...
SEED=$(head -1 /dev/urandom | od -N 1 | awk '{ print $2 }'| sed s/^0*//)
# Pseudo-random output fetched
#+ from /dev/urandom (system pseudo-random device-file),
#+ then converted to line of printable (octal) numbers by "od",
#+ then "awk" retrieves just one number for SEED,
#+ finally "sed" removes any leading zeros.
RANDOM=$SEED
echo "Random seed = $SEED"
random_numbers
echo; echo
exit 0</PRE
></FONT
></TD
></TR
></TABLE
></DIV
><P
><A
NAME="URANDOMREF"
></A
></P
><DIV
CLASS="NOTE"
><P
></P
><TABLE
CLASS="NOTE"
WIDTH="100%"
BORDER="0"
><TR
><TD
WIDTH="25"
ALIGN="CENTER"
VALIGN="TOP"
><IMG
SRC="../images/note.gif"
HSPACE="5"
ALT="Note"></TD
><TD
ALIGN="LEFT"
VALIGN="TOP"
><P
>The <TT
CLASS="FILENAME"
>/dev/urandom</TT
> pseudo-device file
provides a method of generating much more <SPAN
CLASS="QUOTE"
>"random"</SPAN
>
pseudorandom numbers than the <TT
CLASS="VARNAME"
>$RANDOM</TT
>
variable. <TT
CLASS="USERINPUT"
><B
>dd if=/dev/urandom of=targetfile
bs=1 count=XX</B
></TT
> creates a file of well-scattered
pseudorandom numbers. However, assigning these numbers
to a variable in a script requires a workaround, such
as filtering through <A
HREF="extmisc.html#ODREF"
>od</A
>
(as in above example, <A
HREF="textproc.html#RND"
>Example 16-14</A
>, and
<A
HREF="contributed-scripts.html#INSERTIONSORT"
>Example A-36</A
>), or even piping to
<A
HREF="filearchiv.html#MD5SUMREF"
>md5sum</A
> (see <A
HREF="colorizing.html#HORSERACE"
>Example 36-16</A
>).</P
><P
><A
NAME="AWKRANDOMREF"
></A
></P
><P
>There are also other ways to generate pseudorandom
numbers in a script. <B
CLASS="COMMAND"
>Awk</B
> provides a
convenient means of doing this.</P
><DIV
CLASS="EXAMPLE"
><A
NAME="RANDOM2"
></A
><P
><B
>Example 9-17. Pseudorandom numbers, using <A
HREF="awk.html#AWKREF"
>awk</A
></B
></P
><TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>#!/bin/bash
# random2.sh: Returns a pseudorandom number in the range 0 - 1,
#+ to 6 decimal places. For example: 0.822725
# Uses the awk rand() function.
AWKSCRIPT=' { srand(); print rand() } '
# Command(s)/parameters passed to awk
# Note that srand() reseeds awk's random number generator.
echo -n "Random number between 0 and 1 = "
echo | awk "$AWKSCRIPT"
# What happens if you leave out the 'echo'?
exit 0
# Exercises:
# ---------
# 1) Using a loop construct, print out 10 different random numbers.
# (Hint: you must reseed the srand() function with a different seed
#+ in each pass through the loop. What happens if you omit this?)
# 2) Using an integer multiplier as a scaling factor, generate random numbers
#+ in the range of 10 to 100.
# 3) Same as exercise #2, above, but generate random integers this time.</PRE
></FONT
></TD
></TR
></TABLE
></DIV
><P
>The <A
HREF="timedate.html#DATEREF"
>date</A
> command also lends
itself to <A
HREF="timedate.html#DATERANDREF"
>generating pseudorandom
integer sequences</A
>.</P
></TD
></TR
></TABLE
></DIV
></DIV
><H3
CLASS="FOOTNOTES"
>Notes</H3
><TABLE
BORDER="0"
CLASS="FOOTNOTES"
WIDTH="100%"
><TR
><TD
ALIGN="LEFT"
VALIGN="TOP"
WIDTH="5%"
><A
NAME="FTN.AEN5817"
HREF="randomvar.html#AEN5817"
><SPAN
CLASS="footnote"
>[1]</SPAN
></A
></TD
><TD
ALIGN="LEFT"
VALIGN="TOP"
WIDTH="95%"
><P
>True <SPAN
CLASS="QUOTE"
>"randomness,"</SPAN
> insofar as
it exists at all, can only be found in certain incompletely
understood natural phenomena, such as radioactive
decay. Computers only <I
CLASS="FIRSTTERM"
>simulate</I
>
randomness, and computer-generated sequences of
<SPAN
CLASS="QUOTE"
>"random"</SPAN
> numbers are therefore referred to as
<I
CLASS="FIRSTTERM"
>pseudorandom</I
>.</P
></TD
></TR
><TR
><TD
ALIGN="LEFT"
VALIGN="TOP"
WIDTH="5%"
><A
NAME="FTN.AEN5857"
HREF="randomvar.html#AEN5857"
><SPAN
CLASS="footnote"
>[2]</SPAN
></A
></TD
><TD
ALIGN="LEFT"
VALIGN="TOP"
WIDTH="95%"
><P
>The <I
CLASS="FIRSTTERM"
>seed</I
> of a
computer-generated pseudorandom number series
can be considered an identification label. For
example, think of the pseudorandom series with a
seed of <EM
>23</EM
> as <TT
CLASS="REPLACEABLE"
><I
>Series
#23</I
></TT
>.</P
><P
>A property of a pseurandom number series is the length of
the cycle before it starts repeating itself. A good pseurandom
generator will produce series with very long cycles.</P
></TD
></TR
></TABLE
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
SUMMARY="Footer navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="declareref.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="index.html"
ACCESSKEY="H"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="manipulatingvars.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>Typing variables: <B
CLASS="COMMAND"
>declare</B
> or
<B
CLASS="COMMAND"
>typeset</B
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="variables2.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>Manipulating Variables</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>