old-www/LDP/LG/issue39/rogers.html

287 lines
14 KiB
HTML

<!--startcut ==========================================================-->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="GENERATOR" CONTENT="Mozilla/4.07 [en] (X11; I; Linux 2.0.36 i686) [Netscape]">
<META NAME="Author" CONTENT="James M. Rogers">
<META NAME="Description" CONTENT="This article is the fifth in a series designed to explore the Standard C library implementation available for Linux">
<META NAME="Keywords" CONTENT="linux, standard c library, character functions">
<META NAME="Classification" CONTENT="Second Year Programming">
<TITLE>The Standard C Library for Linux LG 39</TITLE>
</HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000FF" VLINK="#0000AF" ALINK="#FF0000">
<!--endcut ==========================================================-->
"Linux Gazette...<I>making Linux just a little more fun!</I>"
<BR>
<HR>
<BR>&nbsp;
<CENTER>
<H1>
<FONT COLOR="#800000">The Standard C Library for Linux</FONT></H1></CENTER>
<CENTER>
<H3>
<FONT COLOR="#000080">Part Five: &lt;stdlib.h> Miscellaneous Functions</FONT></H3></CENTER>
<CENTER>
<H4>
By <A HREF="mailto:jrogers@u.washington.edu">James M. Rogers</A></H4></CENTER>
<HR>
<P>The last article was on &lt;ctype.h> character handling.&nbsp; This
article is on &lt;stdlib.h> which contains many small sections: integer
math, sorting and searching, random numbers, string to number conversions,
multibyte character conversions, memory allocation and environmental functions.&nbsp;&nbsp;
Because this library contains so many small&nbsp; yet very important sections
I want to discuss each of these groups in its own section.&nbsp; An example
will be given in each section below because these functions are too diverse
to have a single example for all of them.
<P>I am assuming a knowledge of c programming on the part of the reader.&nbsp;
There is no guarantee of accuracy in any of this information nor suitability
for any purpose.
<P>As always, if you see an error in my documentation please tell me and
I will correct myself in a later document.&nbsp; See corrections at end
of the document to review corrections to the previous articles.
<P><B><FONT SIZE=+1>Integer Math</FONT></B>
<UL><TT>#include &lt;stdlib.h></TT>
<P><TT>int&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; abs(int x);</TT>
<BR><TT>div_t&nbsp;&nbsp;&nbsp; div(int numerator, int denominator);</TT>
<BR><TT>long int labs(long int x);</TT>
<BR><TT>ldiv_t&nbsp;&nbsp; ldiv(long int numerator, long int denominator);</TT></UL>
<TT>int x</TT>
<BR><TT>int numerator</TT>
<BR><TT>int denominator</TT>
<BR><TT>The long int versions are the same as the three int arguments.</TT>
<P><TT>abs</TT> returns the absolute value of the argument.
<BR><TT>div</TT> returns a data structure that contains both the quotient
and remainder.
<BR><TT>labs</TT> is the long version of the abs function.
<BR><TT>ldiv</TT> is the long version of the div function.
<P>Integer math is math using whole numbers.&nbsp; No fractions.&nbsp;
This is math from the fourth grade.&nbsp; If you remember the numerator
is divided by the denominator and the answer is the quotient with the left
over stuff being the remainder then you have got it.&nbsp; The div_t and
ldiv_t are structures that hold the quotient and the remainder.&nbsp; These
structures look like this:
<P><TT>struct div_t {</TT>
<BR><TT>&nbsp;&nbsp;&nbsp; int quot;</TT>
<BR><TT>&nbsp;&nbsp;&nbsp; int rem;</TT>
<BR><TT>}</TT><TT></TT>
<P><TT>struct ldiv_t {</TT>
<BR><TT>&nbsp;&nbsp;&nbsp; long int quot;</TT>
<BR><TT>&nbsp;&nbsp;&nbsp; long int rem;</TT>
<BR><TT>}</TT>
<P>These types are already defined for you in the &lt;stdlib.h> library.&nbsp;
The <A HREF="rogers_example05a.c">example file</A> shows a few ways to
use these four functions.
<P><B><FONT SIZE=+1>String to Number Conversions</FONT></B>
<UL><TT>#include &lt;stdlib.h></TT>
<P><TT>double&nbsp;&nbsp; atof(const char *string);</TT>
<BR><TT>int&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; atoi(const char *string);</TT>
<BR><TT>long int atol(const char *string);</TT>
<BR><TT>double&nbsp;&nbsp; strtod(const char *string, char **endptr);</TT>
<BR><TT>long int strtol(const char *string, char **endptr, int base);</TT>
<BR><TT>unsigned long int strtoul(const char *string, char **endptr, int
base);</TT></UL>
<TT>const char *string</TT>
<BR><TT>char **endptr</TT>
<BR><TT>int base</TT>
<P><TT>atof</TT> is acsii to float conversion.
<BR><TT>atoi</TT> is ascii to integer conversion.
<BR><TT>atol</TT> is acsii to long conversion.
<BR><TT>strtod</TT> is string to double conversion.
<BR><TT>strtol </TT>is string to long and the string can contain numbers
in bases other than base 10.
<BR><TT>strtoul</TT> is the same as strtol, except that it returns an unsigned
long.
<P>If you are reading in a number from user input then you will need to
use these routines to convert from the digits '1' '2' '3' to the number
123.&nbsp; The easiest way to convert the other way, from a number to a
string,&nbsp; is to use the sprintf() function.
<P>The <A HREF="rogers_example05b.c">example program</A> is just a sample
of use of each of the above commands.
<P><B><FONT SIZE=+1>Searching and Sorting</FONT></B>
<UL><TT>#include &lt;stdlib.h></TT>
<P><TT>void qsort(void *base, size_t num_of_objs, size_t size_of_obj, int
(*compar)(const void *, const void *));</TT>
<BR><TT>void bsearch(const void *key, void *base, size_t num_of_objs, size_t
size_of_obj, int (*compar)(const void *, const void *));</TT></UL>
<TT>void *base</TT>
<BR><TT>size_t num_of_objs</TT>
<BR><TT>size_t size_of_obj</TT>
<BR><TT>const void *</TT>
<BR><TT>const void *key</TT>
<P><TT>qsort</TT> will sort the array of strings using a comparison function
that you write yourself.
<BR><TT>bsearch </TT>will search the sorted array using a comparison function
that you write yourself.
<P>You do not need to write your own sorting routines yourself.&nbsp; Through
the use of these functions you can sort and search through memory arrays.
<P>It is important to realize that you must sort an array before you can
search it because of the search method used.
<P>In order to generate the information to have something to sort I combined
<A HREF="rogers_example05c.c">this
example</A> with the random number generation.&nbsp; I initialize a string
array with a series of random numbers and then sort it.&nbsp; I then look
to see if the string 1000 is in the table.&nbsp; I finally print out the
sorted array.
<P><B><FONT SIZE=+1>Memory Allocation</FONT></B>
<UL><TT>#include &lt;stdlib.h></TT>
<P><TT>void *calloc(size_t num_of_objs, size_t size_of_objs);</TT>
<BR><TT>void free(void *pointer_to_obj);</TT>
<BR><TT>void *malloc(size_t size_of_object);</TT>
<BR><TT>void *realloc(void *pointer_to_obj, size_t size_of_obj);</TT></UL>
<TT>size_t num_of_objs</TT>
<BR><TT>size_t size_of_objs</TT>
<BR><TT>void *pointer_to_obj</TT>
<P><TT>free </TT>will free the specified memory that was previously allocated.&nbsp;
You will core dump if you try to free memory twice.
<BR><TT>malloc</TT> will allocate the specified number of bytes and return
a pointer to the memory.
<BR><TT>calloc </TT>will allocate the array and return a pointer to the
array.
<BR><TT>realloc</TT> allows you to change the size of a memory area "on-the-fly".&nbsp;
You can shrink and grow the memory as you need, be aware that trying to
access memory beyond what you have allocated will cause a core dump.
<P>Runtime memory allocation allows you to write a program that only uses
the memory that is needed for that program run.&nbsp; No need to change
a value and recompile if you ask for the memory at runtime.&nbsp; Also
no need to setup arrays to the maximum possible size when the average run
is a fraction the size of the maximum.
<P>The danger of using memory this way is that in complex programs it is
easy to forget to free memory when you are done with it.&nbsp; These "memory
leaks" will eventually cause your program to use all available memory on
a system and cause a dump.&nbsp; It is also important to not assume that
a memory allocation will always work.&nbsp;&nbsp; Attempting to use a pointer
to a memory location that your program doesn't own will cause a core dump.&nbsp;
A more serious problem is when a pointer is overwriting your own programs
memory.&nbsp; This will cause your program to work very erratically and
will be hard to pinpoint the exact problem.
<P>I had to write two different examples to demonstrate all the diversity
of these functions.&nbsp; In order to actually demonstrate their use I
had to actually program something halfway useful.
<P>The <A HREF="rogers_example05d.c">first example</A> is a stack program
that allocates and deallocates the memory as you push and pop values from
the stack.
<P>The <A HREF="rogers_example05e.c">second example</A> reads any file
into the computers memory, reallocating the memory as it goes.&nbsp; I
left debug statements in the&nbsp; second program so that you can see that
the memory is only reallocated when the program needs more memory.
<P><B><FONT SIZE=+1>Environmental</FONT></B>
<UL><TT>#include &lt;stdlib.h></TT>
<P><TT>void abort ( void );</TT>
<BR><TT>int atexit ( void ( *func )( void ) );</TT>
<BR><TT>void exit ( int status);</TT>
<BR><TT>char *getenv( const char *string);</TT>
<BR><TT>int setenv ( const char *name, const char *value, int overwrite
);</TT>
<BR><TT>int unsetenv ( const char *name, const char *value, int overwrite
);</TT>
<BR><TT>int system ( const char *string );</TT></UL>
<TT>void</TT>
<BR><TT>void (*func)(void)</TT>
<BR><TT>int status</TT>
<BR><TT>const char *string</TT>
<BR><TT>const char *name</TT>
<BR><TT>const char *value</TT>
<BR><TT>int overwrite</TT>
<P><TT>abort </TT>causes the signal SIGABORT to be sent to your program.&nbsp;
Unless your program handles the signal it will exit with an abort error.
<BR><TT>atexit </TT>will allow you to run a set of function calls upon
exit from your program.&nbsp; You can stack them up quite a bit, I seem
to remember that you can have up to 32 of these.
<BR><TT>exit</TT> will exit your program with the specified integer return
value.
<BR><TT>getenv</TT> will return the value of the environmental variable
specified or a NULL if the environmental variable is not set.
<BR>setenv will set the specified variable to the specified value, will
return a -1 on an error.
<BR>unsetenv will unset the specified variable
<BR>system will execute the specified command string and return the exit
value of the command.
<P>These functions allow you to connect back to the unix environment that
you ran your program from and set exit values, read the values of environmental
variables and run commands from within a c program.
<P>The <A HREF="rogers_example05f.c">example program</A> demonstrates how
to read an environmental variable and the two different methods of setting
an environmental variable.&nbsp; Run this program without TESTING being
set and then run `export TESTING=anything` and run the program again.&nbsp;&nbsp;
You will notice the difference between the two runs.&nbsp; Also notice
the order of the atexit() function calls and the order that they are actually
called when the program does exit.&nbsp; Copy one of the abort() calls
out before the exit and reexecute the program, when the abort is called
the atexit() functions are not called.
<P><B><FONT SIZE=+1>Random Numbers</FONT></B>
<UL><TT>#include &lt;stdlib.h></TT>
<P><TT>int rand(void);</TT>
<BR><TT>void srand(unsigned int seed);</TT></UL>
<TT>void</TT>
<BR><TT>unsigned int seed</TT>
<P><TT>rand</TT> will return a random value between 0 and RAND_MAX.
<BR><TT>seed </TT>starts a new sequence of psuedo-random numbers.
<P>The rand function will set the seed to 1 the first time that you call
rand in your program unless you set it to something else.&nbsp; The sequence
of numbers that you get from rand will be in the same order if you set
seed to the same value each time.&nbsp; To get closer to truly random numbers
you should set the seed to something that won't repeat.&nbsp; time() is
what I use in the example.
<P><A HREF="rogers_example05c.c">The example</A> for this section has been
combined with the sorting and searching.
<P><B><FONT SIZE=+1>Multibyte Conversions</FONT></B>
<UL><TT>#include &lt;stdlib.h></TT>
<BR><TT>int mblen(const char *s, size_t n);</TT>
<BR><TT>int mbtowc(wchar_t *pwc, const char *s, size_t n);</TT>
<BR><TT>int wctomb(char *s, wchar_t wchar);</TT>
<BR><TT>size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);</TT>
<BR><TT>size_t mbstowcs(char *s, wchar_t *pwcs, size_t n);</TT></UL>
This is that new fangled multilanguage character mapping stuff.&nbsp; I
don't think that I am qualified to write about it yet.&nbsp; I will revisit
it once I have covered everything else.&nbsp; Or maybe someone else could
tell us how to use these in everyday programming.
<P>
<HR>
<H4>
Bibliography:</H4>
<I>The ANSI C Programming Language, Second Edition</I>, Brian W. Kernighan,
Dennis M. Ritchie, Printice Hall Software Series, 1988
<P><I>The Standard C Library</I>, P. J. Plauger, Printice Hall P T R, 1992
<P><I>The Standard C Library, Parts 1, 2, and 3</I>, Chuck Allison, <I>C/C++
Users Journal</I>, January, February, March 1995
<P>STDLIB(3), BSD MANPAGE, <I>Linux Programmer's Manual</I>, 29 November
1993
<P> <HR><P>
&nbsp;<BR>
<CENTER>
<H4>
Previous "The Standard C Library for Linux" Articles</H4></CENTER>
<A HREF="http://www.linuxgazette.com/issue24/rogers.html"><I>The Standard
C Library for Linux, stdio.h</I>, James M. Rogers, January 1998</A>
<BR><A HREF="http://www.linuxgazette.com/issue31/rogers1.html"><I>The Standard
C Library for Linux, stdio.h</I>, James M. Rogers, July 1998</A>
<BR><A HREF="http://www.linuxgazette.com/issue32/rogers.html"><I>The Standard
C Library for Linux, stdio.h</I>, James M. Rogers, August 1998</A>
<BR><A HREF="http://www.linuxgazette.com/issue38/rogers.html"><I>The Standard
C Library for Linux, ctype.h</I>, James M. Rogers, March 1999</A>
<!--===================================================================-->
<P> <hr> <P>
<center><H5>Copyright &copy; 1999, James M. Robers<BR>
Published in Issue 39 of <i>Linux Gazette</i>, April 1999</H5></center>
<!--===================================================================-->
<P> <hr> <P>
<A HREF="./index.html"><IMG ALIGN=BOTTOM SRC="../gx/indexnew.gif"
ALT="[ TABLE OF CONTENTS ]"></A>
<A HREF="../index.html"><IMG ALIGN=BOTTOM SRC="../gx/homenew.gif"
ALT="[ FRONT PAGE ]"></A>
<A HREF="./ayers2.html"><IMG SRC="../gx/back2.gif"
ALT=" Back "></A>
<A HREF="./telgarsky.html"><IMG SRC="../gx/fwd.gif" ALT=" Next "></A>
<P> <hr> <P>
<!--startcut ==========================================================-->
</BODY>
</HTML>
<!--endcut ============================================================-->