old-www/HOWTO/text/Large-Disk-HOWTO

1716 lines
78 KiB
Plaintext
Raw Permalink Blame History

Large Disk HOWTO
Andries Brouwer, aeb@cwi.nl
v2.5, 2004-11-01
All about disk geometry and the 1024 cylinder and other limits for
disks.
For the most recent version of this text, see www.win.tue.nl.
1. Large disks
You got a new disk. What to do? Well, on the software side: use fdisk
or cfdisk to create partitions, and then mke2fs or mkreiserfs or so to
create a filesystem, and then mount to attach the new filesystem to
the big file hierarchy. Make sure you have relatively recent versions
of these utilities - often old versions have problems handling large
disks.
You need not read this HOWTO since there are no problems with large
hard disks these days.
Long ago, disks were large when they had a capacity larger than 528
MB, or than 8.4 GB, or than 33.8 GB. These days the interesting limit
is 137 GB. In all cases, sufficiently recent Linux kernels handle the
disk fine.
Sometimes booting requires some care, since Linux cannot help you when
it isn't running yet. But again, with a sufficiently recent BIOS and
boot loader there are no problems. Most of the text below will treat
the cases of (i) ancient hardware, (ii) broken hardware or BIOS, (iii)
several operating systems on the same disk, (iv) booting old systems.
Advice
For large SCSI disks: Linux has supported them from very early on. No
action required.
For large IDE disks (over 8.4 GB): make sure your kernel is 2.0.34 or
later.
For large IDE disks (over 33.8 GB): make sure your kernel is
2.0.39/2.2.14/2.3.21 or later.
For large IDE disks (over 137 GB): make sure your kernel is
2.4.19/2.5.3 or later.
If the kernel boots fine, and the boot messages indicate that it
recognizes the disk correctly, but there are problems with utilities,
upgrade the utilities.
If ``LILO'' hangs at boot time, make sure you have version 21.4 or
later, and specify the keyword lba32 in the configuration file
/etc/lilo.conf. With an older version of LILO, try both with and
without the linear keyword.
There may be geometry problems that can be solved by giving an
explicit geometry to kernel/LILO/fdisk.
If you have an old fdisk and it warns about ``overlapping''
partitions: ignore the warnings, or check using cfdisk that really all
is well.
For HPT366, see the Linux HPT366 HOWTO.
If at boot time the kernel cannot read the partition table, consider
the possibility that UDMA66 was selected while the controller or the
cable or the disk drive did not support UDMA66. In such a case every
attempt to read will fail, and reading the partition table is the
first thing the kernel does. Make sure no UDMA66 is used.
If the BIOS hangs at boot time because of a large disk, and flashing a
newer version is not an option, take the disk out of the BIOS setup.
If you have to boot from the disk, look whether a capacity clipping
jumper helps.
If you think something is wrong with the size of your disk, make sure
that you are not confusing binary and decimal ``'', and realize that
the free space that df reports on an empty disk is a few percent
smaller than the partition size, because there is administrative
overhead. Software that does not understand 48-bit addressing will
view a 137+ GB disk as having a capacity of 137 GB. When a capacity
clipping ``jumper'' is present, a larger disk may have been clipped to
33 GB or to 2 GB.
If for a removable drive the kernel reports two different sizes, then
one is found from the drive, and the other from the disk/floppy. This
second value will be zero when the drive has no media.
Now, if you still think there are problems, or just are curious, read
on.
Below a rather detailed description of all relevant details. I used
kernel version 2.0.8 source as a reference. Other versions may differ
a bit.
2. Units
A kilobyte (kB) is 1000 bytes. A megabyte (MB) is 1000 kB. A
gigabyte (GB) is 1000 MB. A terabyte (TB) is 1000 GB. This is the SI
norm. However, there are people that use 1 MB=1024000 bytes and talk
about 1.44 MB floppies, and people who think that 1 MB=1048576 bytes.
Here I follow the recent standard and write Ki, Mi, Gi, Ti for the
binary units, so that these floppies are 1440 KiB (1.47 MB, 1.41 MiB),
1 MiB is 1048576 bytes (1.05 MB), 1 GiB is 1073741824 bytes (1.07 GB)
and 1 TiB is 1099511627776 bytes (1.1 TB).
Quite correctly, the disk drive manufacturers follow the SI norm and
use the decimal units. However, Linux kernel boot messages (for not-
so-recent kernels) and some old fdisk-type programs use the symbols MB
and GB for binary, or mixed binary-decimal units. So, before you think
your disk is smaller than was promised when you bought it, compute
first the actual size in decimal units (or just in bytes).
Concerning terminology and abbreviation for binary units, Knuth has an
alternative proposal, namely to use KKB, MMB, GGB, TTB, PPB, EEB, ZZB,
YYB and to call these large kilobyte, large megabyte, ... large
yottabyte. He writes: `Notice that doubling the letter connotes both
binary-ness and large-ness.' This is a good proposal - `large
gigabyte' sounds better than `gibibyte'. For our purposes however the
only important thing is to stress that a megabyte has precisely
1000000 bytes, and that some other term and abbreviation is required
if you mean something else.
3. Disk Access
Disk access is done in units called sectors. In order to read or
write something from or to the disk, we have to specify the position
on the disk, for example by giving the sector number. If the disk is
a SCSI disk, then this sector number goes directly into the SCSI
command and is understood by the disk. If the disk is an IDE disk
using LBA, then precisely the same holds. But if the disk is old, RLL
or MFM or IDE from before the LBA times, then the disk hardware
expects a triple (cylinder,head,sector) to designate the desired spot
on the disk.
3.1. Cylinders, heads and sectors
A disk has sectors numbered 0, 1, 2, ... This is called LBA
addressing.
In ancient times, before the advent of IDE disks, disks had a geometry
described by three constants C, H, S: the number of cylinders, the
number of heads, the number of sectors per track. The address of a
sector was given by three numbers: c, h, s: the cylinder number
(between 0 and C-1), the head number (between 0 and H-1), and the
sector number within the track (between 1 and S), where for some
mysterious reason c and h count from 0, but s counts from 1. This is
called CHS addressing.
No disk manufactured less than ten years ago has a geometry, but this
ancient 3D sector addressing is still used by the INT13 BIOS interface
(with fantasy numbers C, H, S unrelated to any physical reality).
The correspondence between the linear numbering and this 3D notation
is as follows: for a disk with C cylinders, H heads and S
sectors/track position (c,h,s) in 3D or CHS notation is the same as
position c*H*S + h*S + (s-1) in linear or LBA notation.
Consequently, in order to access a very old non-SCSI disk, we need to
know its geometry, that is, the values of C, H and S. (And if you
don't know, there is a lot of good information on
www.thetechpage.com.)
3.2. Sectorsize
In the present text a sector has 512 bytes. This is almost always
true, but for example certain MO disks use a sectorsize of 2048 bytes,
and all capacities given below must be multiplied by four. (When
using fdisk on such disks, make sure you have version 2.9i or later,
and give the `-b 2048' option.)
3.3. Disksize
A disk with C cylinders, H heads and S sectors per track has C*H*S
sectors in all, and can store C*H*S*512 bytes. For example, if the
disk label says C/H/S=4092/16/63 then the disk has 4092*16*63=4124736
sectors, and can hold 4124736*512=2111864832 bytes (2.11 GB). There
is an industry convention to give C/H/S=16383/16/63 for disks larger
than 8.4 GB, and the disk size can no longer be read off from the
C/H/S values reported by the disk.
3.4. The 1024 cylinder and 8.5 GB limits
The old INT13 BIOS interface to disk I/O uses 24 bits to address a
sector: 10 bits for the cylinder, 8 bits for the head, and 6 bits for
the sector number within the track (counting from 1). This means that
this interface cannot address more than 1024*256*63 sectors, which is
8.5 GB (with 512-byte sectors). And if the (fantasy) geometry
specified for the disk has fewer than 1024 cylinders, or 256 heads, or
63 sectors per track, then this limit will be less.
(More precisely: with INT 13, AH selects the function to perform, CH
is the low 8 bits of the cylinder number, CL has in bits 7-6 the high
two bits of the cylinder number and in bits 5-0 the sector number, DH
is the head number, and DL is the drive number (80h or 81h). This
explains part of the layout of the partition table.)
This state of affairs was rectified when the so-called Extended INT13
functions were introduced. A modern BIOS has no problems accessing
large disks.
(More precisely: DS:SI points at a 16-byte Disk Address Packet that
contains an 8-byte starting absolute block number.)
Linux does not use the BIOS, so does (and did) not have this problem.
However, this geometry stuff plays a role in the interpretation of
partition tables, so if Linux shares a disk with for example DOS, then
it needs to know what geometry DOS will think the disk has. It also
plays a role at boot time, where the BIOS has to load a boot loader,
and the boot loader has to load the operating system.
3.5. The 137 GB limit
The old ATA standard describes how to address a sector on an IDE disk
using 28 bits (8 bits for the sector, 4 for the head, 16 for the
cylinder). This means that an IDE disk can have at most 2^28
addressable sectors With 512-byte sectors this is 2^37 bytes, that is,
137.4 GB.
The ATA-6 standard includes a specification how to address past this
2^28 sector boundary. The new standard allows addressing of 2^48
sectors. There is support in recent Linux kernels that have
incorporated Andre Hedrick's IDE patch, for example 2.4.18-pre7-ac3
and 2.5.3.
Maxtor sells 160 GB IDE disks since Fall 2001. An old kernel will
treat such disks as 137.4 GB disks.
4. History of BIOS and IDE limits
ATA Specification (for IDE disks) - the 137 GB limit
At most 65536 cylinders (numbered 0-65535), 16 heads (numbered
0-15), 255 sectors/track (numbered 1-255), for a maximum total
capacity of 267386880 sectors (of 512 bytes each), that is,
136902082560 bytes (137 GB). In Sept 2001, the first drives
larger than this (160 GB Maxtor Diamondmax) appeared.
BIOS Int 13 - the 8.5 GB limit
At most 1024 cylinders (numbered 0-1023), 256 heads (numbered
0-255), 63 sectors/track (numbered 1-63) for a maximum total
capacity of 8455716864 bytes (8.5 GB). This is a serious
limitation today. It means that DOS cannot use present day
large disks.
The 528 MB limit
If the same values for c,h,s are used for the BIOS Int 13 call
and for the IDE disk I/O, then both limitations combine, and one
can use at most 1024 cylinders, 16 heads, 63 sectors/track, for
a maximum total capacity of 528482304 bytes (528MB), the
infamous 504 MiB limit for DOS with an old BIOS. This started
being a problem around 1993, and people resorted to all kinds of
trickery, both in hardware (LBA), in firmware (translating
BIOS), and in software (disk managers). The concept of
`translation' was invented (1994): a BIOS could use one geometry
while talking to the drive, and another, fake, geometry while
talking to DOS, and translate between the two.
The 2.1 GB limit (April 1996)
Some older BIOSes only allocate 12 bits for the field in CMOS
RAM that gives the number of cylinders. Consequently, this
number can be at most 4095, and only 4095*16*63*512=2113413120
bytes are accessible. The effect of having a larger disk would
be a hang at boot time. This made disks with geometry
4092/16/63 rather popular. And still today many large disk
drives come with a jumper to make them appear 4092/16/63. See
also over2gb.htm. Other BIOSes would not hang but just detect a
much smaller disk, like 429 MB instead of 2.5 GB.
The 3.2 GB limit
There was a bug in the Phoenix 4.03 and 4.04 BIOS firmware that
would cause the system to lock up in the CMOS setup for drives
with a capacity over 3277 MB. See over3gb.htm.
The 4.2 GB limit (Feb 1997)
Simple BIOS translation (ECHS=Extended CHS, sometimes called
`Large disk support' or just `Large') works by repeatedly
doubling the number of heads and halving the number of cylinders
shown to DOS, until the number of cylinders is at most 1024.
Now DOS and Windows 95 cannot handle 256 heads, and in the
common case that the disk reports 16 heads, this means that this
simple mechanism only works up to 8192*16*63*512=4227858432
bytes (with a fake geometry with 1024 cylinders, 128 heads, 63
sectors/track). Note that ECHS does not change the number of
sectors per track, so if that is not 63, the limit will be
lower. See over4gb.htm.
The 7.9 GB limit
Slightly smarter BIOSes avoid the previous problem by first
adjusting the number of heads to 15 (`revised ECHS'), so that a
fake geometry with 240 heads can be obtained, good for
1024*240*63*512=7927234560 bytes.
The 8.4 GB limit
Finally, if the BIOS does all it can to make this translation a
success, and uses 255 heads and 63 sectors/track (`assisted LBA'
or just `LBA') it may reach 1024*255*63*512=8422686720 bytes,
slightly less than the earlier 8.5 GB limit because the
geometries with 256 heads must be avoided. (This translation
will use for the number of heads the first value H in the
sequence 16, 32, 64, 128, 255 for which the total disk capacity
fits in 1024*H*63*512, and then computes the number of cylinders
C as total capacity divided by (H*63*512).)
The 33.8 GB limit (August 1999)
The next hurdle comes with a size over 33.8 GB. The problem is
that with the default 16 heads and 63 sectors/track this
corresponds to a number of cylinders of more than 65535, which
does not fit into a short. Many BIOSes couldn't handle such
disks. (See, e.g., Asus upgrades for new flash images that
work.) Linux kernels older than 2.2.14 / 2.3.21 need a patch.
See ``IDE problems with 34+ GB disks'' below.
The 137 GB limit (Sept 2001)
As mentioned above, the old ATA protocol uses 16+4+8 = 28 bits
to specify the sector number, and hence cannot address more than
2^28 sectors. ATA-6 describes an extension that allows the
addressing of 2^48 sectors, a million times as much. There is
support in very recent kernels.
The 2 TiB limit
With 32-bit sector numbers, one can address 2 TiB. A lot of
software will have to be rewritten once disks get larger.
Hard drives over 8.4 GB are supposed to report their geometry as
16383/16/63. This in effect means that the `geometry' is obsolete,
and the total disk size can no longer be computed from the geometry,
but is found in the LBA capacity field returned by the ``IDENTIFY
command''. Hard drives over 137.4 GB are supposed to report an LBA
capacity of 0xfffffff = 268435455 sectors (137438952960 bytes). Now
the actual disk size is found in the new 48-capacity field.
5. Booting
When the system is booted, the BIOS reads sector 0 (known as the MBR -
the Master Boot Record) from the first disk (or from floppy or CDROM),
and jumps to the code found there - usually some bootstrap loader.
These small bootstrap programs found there typically have no own disk
drivers and use BIOS services. This means that a Linux kernel can
only be booted when it is entirely located within the first 1024
cylinders, unless you both have a modern BIOS (a BIOS that supports
the Extended INT13 functions), and a modern bootloader (a bootloader
that uses these functions when available).
This problem (if it is a problem) is very easily solved: make sure
that the kernel (and perhaps other files used during bootup, such as
LILO map files) are located on a partition that is entirely contained
in the first 1024 cylinders of a disk that the BIOS can access -
probably this means the first or second disk.
Thus: create a small partition, say 10 MB large, so that there is room
for a handful of kernels, making sure that it is entirely contained
within the first 1024 cylinders of the first or second disk. Mount it
on /boot so that LILO will put its stuff there.
Most systems from 1998 or later will have a modern BIOS.
5.1. LILO and the `lba32' and `linear' options
Executive summary: If you use LILO as boot loader, make sure you have
LILO version 21.4 or later. (It can be found at
ftp://metalab.unc.edu/pub/Linux/system/boot/lilo/.) Always use the
lba32 option.
An invocation of /sbin/lilo (the boot map installer) stores a list of
addresses in the boot map, so that LILO (the boot loader) knows from
where to read the kernel image. By default these addresses are stored
in (c,h,s) form, and ordinary INT13 calls are used at boot time.
When the configuration file specifies lba32 or linear, linear
addresses are stored. With lba32 also linear addresses are used at
boot time, when the BIOS supports extended INT13. With linear, or
with an old BIOS, these linear addresses are converted back to (c,h,s)
form, and ordinary INT13 calls are used.
Thus, with lba32 there are no geometry problems and there is no 1024
cylinder limit. Without it there is a 1024 cylinder limit. What about
the geometry?
The boot loader and the BIOS must agree as to the disk geometry.
/sbin/lilo asks the kernel for the geometry, but there is no guarantee
that the Linux kernel geometry coincides with what the BIOS will use.
Thus, often the geometry supplied by the kernel is worthless. In such
cases it helps to give LILO the `linear' option. The advantage is that
the Linux kernel idea of the geometry no longer plays a role. The
disadvantage is that lilo cannot warn you when part of the kernel was
stored above the 1024 cylinder limit, and you may end up with a system
that does not boot.
5.2. A LILO bug
With LILO versions below v21 there is another disadvantage: the
address conversion done at boot time has a bug: when c*H is 65536 or
more, overflow occurs in the computation. For H larger than 64 this
causes a stricter limit on c than the well-known c < 1024; for
example, with H=255 and an old LILO one must have c < 258. (c=cylinder
where kernel image lives, H=number of heads of disk)
5.3. 1024 cylinders is not 1024 cylinders
Tim Williams writes: `I had my Linux partition within the first 1024
cylinders and still it wouldnt boot. First when I moved it below 1 GB
did things work.' How can that be? Well, this was a SCSI disk with
AHA2940UW controller which uses either H=64, S=32 (that is, cylinders
of 1 MiB = 1.05 MB), or H=255, S=63 (that is, cylinders of 8.2 MB),
depending on setup options in firmware and BIOS. No doubt the BIOS
assumed the former, so that the 1024 cylinder limit was found at 1
GiB, while Linux used the latter and LILO thought that this limit was
at 8.4 GB.
5.4. No 1024 cylinder limit on old machines with IDE
The nuni boot loader does not use BIOS services but accesses IDE
drives directly. So, one can put it on a floppy or in the MBR and boot
from anywhere on any IDE drive (not only from the first two). Find it
at //metalab.unc.edu/pub/Linux/system/boot/loaders/.
5.5. Other boot loaders
LILO is a bit fragile, it requires the discipline of running
/sbin/lilo each time one installs a new kernel. Some other boot
loaders do not have this disadvantage. Especially grub is popular
these days; a major disadvantage is that it does not support the lilo
-R label function.
6. Disk geometry, partitions and `overlap'
If you have several operating systems on your disks, then each uses
one or more disk partitions. A disagreement on where these partitions
are may have catastrophic consequences.
The MBR contains a partition table describing where the (primary)
partitions are. There are 4 table entries, for 4 primary partitions,
and each looks like
struct partition {
char active; /* 0x80: bootable, 0: not bootable */
char begin[3]; /* CHS for first sector */
char type;
char end[3]; /* CHS for last sector */
int start; /* 32 bit sector number (counting from 0) */
int length; /* 32 bit number of sectors */
};
(where CHS stands for Cylinder/Head/Sector).
This information is redundant: the location of a partition is given
both by the 24-bit begin and end fields, and by the 32-bit start and
length fields.
Linux only uses the start and length fields, and can therefore handle
partitions of not more than 2^32 sectors, that is, partitions of at
most 2 TiB. That is twelve times larger than the disks available
today, so maybe it will be enough for the next five years or so. (So,
partitions can be very large, but there is a serious restriction in
that a file in an ext2 filesystem on hardware with 32-bit integers
cannot be larger than 2 GiB.)
DOS uses the begin and end fields, and uses the BIOS INT13 call to
access the disk, and can therefore only handle disks of not more than
8.4 GB, even with a translating BIOS. (Partitions cannot be larger
than 2.1 GB because of restrictions of the FAT16 file system.) The
same holds for Windows 3.11 and WfWG and Windows NT 3.*.
Windows 95 has support for the Extended INT13 interface, and uses
special partition types (c, e, f instead of b, 6, 5) to indicate that
a partition should be accessed in this way. When these partition
types are used, the begin and end fields contain dummy information
(1023/255/63). Windows 95 OSR2 introduces the FAT32 file system
(partition type b or c), that allows partitions of size at most 2 TiB.
What is this nonsense you get from fdisk about `overlapping'
partitions, when in fact nothing is wrong? Well - there is something
`wrong': if you look at the begin and end fields of such partitions,
as DOS does, they overlap. (And that cannot be corrected, because
these fields cannot store cylinder numbers above 1024 - there will
always be `overlap' as soon as you have more than 1024 cylinders.)
However, if you look at the start and length fields, as Linux does,
and as Windows 95 does in the case of partitions with partition type
c, e or f, then all is well. So, ignore these warnings when cfdisk is
satisfied and you have a Linux-only disk. Be careful when the disk is
shared with DOS. Use the commands cfdisk -Ps /dev/hdx and cfdisk -Pt
/dev/hdx to look at the partition table of /dev/hdx.
6.1. The last cylinder
Many old IBM PS/2 systems used disks with a defect map written to the
end of the disk. (Bit 0x20 in the control word of the disk parameter
table is set.) Therefore, FDISK would not use the last cylinder. Just
to be sure, the BIOS often already reports the size of the disk as one
cylinder smaller than reality, and that may mean that two cylinders
are lost. Newer BIOSes have several disk size reporting functions,
where internally one calls the other. When both subtract 1 for this
reserved cylinder and also FDISK does so, then one may lose three
cylinders. These days all of this is irrelevant, but this may provide
an explanation if one observes that different utilities have slightly
different opinions about the disk size.
6.2. Cylinder boundaries
A well-known claim says that partitions should start and end at
cylinder boundaries.
Since "disk geometry" is something without objective existence,
different operating systems will invent different geometries for the
same disk. One often sees a translated geometry like */255/63 used by
one and an untranslated geometry like */16/63 used by another OS.
(People tell me Windows NT uses */64/32 while Windows 2K uses
*/255/63.) Thus, it may be impossible to align partitions to cylinder
boundaries according to each of the the various ideas about the size
of a cylinder that one's systems have. Also different Linux kernels
may assign different geometries to the same disk. Also, enabling or
disabling the BIOS of a SCSI card may change the fake geometry of the
connected SCSI disks.
Fortunately, for Linux there is no alignment requirement at all.
(Except that some semi-broken installation software likes to be very
sure that all is OK; thus, it may be impossible to install RedHat 7.1
on a disk with unaligned partitions because DiskDruid is unhappy.)
People report that it is easy to create nonaligned partitions in
Windows NT, without any noticeable bad effects.
But MSDOS 6.22 has an alignment requirement. Extended partition
sectors that are not on a cylinder boundary are ignored by its FDISK.
The system itself is happy with any alignment, but interprets relative
starting addresses as if relative to an aligned address: The starting
address of a logical partition is given relative not to the address of
the extended partition sector that describes it, but relative to the
start of the cylinder that contains that sector. (So, it is not
surprising that also PartitionMagic requires alignment.)
What is the definition of alignment? MSDOS 6.22 FDISK will do the
following: 1. If the first sector of the cylinder is a partition table
sector, then the rest of the track is unused, and the partition starts
with the the next track. This applies to sector 0 (the MBR) and the
partition table sectors preceding logical partitions. 2. Otherwise,
the partition starts at the first sector of the cylinder. Also the
extended partition starts at a cylinder boundary. The cfdisk man page
says that old versions of DOS did not align partitions.
Use of partition type 85 for the extended partition makes it invisible
to DOS, making sure that only Linux will look inside.
As an aside: on a Sparc, the boot partition must start on a cylinder
boundary (but there is no requirement on the end).
7. Translation and Disk Managers
Disk geometry (with heads, cylinders and tracks) is something from the
age of MFM and RLL. In those days it corresponded to a physical
reality. Nowadays, with IDE or SCSI, nobody is interested in what the
`real' geometry of a disk is. Indeed, the number of sectors per track
is variable - there are more sectors per track close to the outer rim
of the disk - so there is no `real' number of sectors per track.
Quite the contrary: the IDE command INITIALIZE DRIVE PARAMETERS (91h)
serves to tell the disk how many heads and sectors per track it is
supposed to have today. It is quite normal to see a large modern disk
that has 2 heads report 15 or 16 heads to the BIOS, while the BIOS may
again report 255 heads to user software.
For the user it is best to regard a disk as just a linear array of
sectors numbered 0, 1, ..., and leave it to the firmware to find out
where a given sector lives on the disk. This linear numbering is
called LBA.
So now the conceptual picture is the following. DOS, or some boot
loader, talks to the BIOS, using (c,h,s) notation. The BIOS converts
(c,h,s) to LBA notation using the fake geometry that the user is
using. If the disk accepts LBA then this value is used for disk I/O.
Otherwise, it is converted back to (c',h',s') using the geometry that
the disk uses today, and that is used for disk I/O.
Note that there is a bit of confusion in the use of the expression
`LBA': As a term describing disk capabilities it means `Linear Block
Addressing' (as opposed to CHS Addressing). As a term in the BIOS
Setup, it describes a translation scheme sometimes called `assisted
LBA' - see above under ```'''.
Something similar works when the firmware doesn't speak LBA but the
BIOS knows about translation. (In the setup this is often indicated
as `Large'.) Now the BIOS will present a geometry (C,H,S) to the
operating system, and use (C',H',S') while talking to the disk
controller. Usually S = S', C = C'/N and H = H'*N, where N is the
smallest power of two that will ensure C' <= 1024 (so that least
capacity is wasted by the rounding down in C' = C/N). Again, this
allows access of up to 8.4 GB (7.8 GiB).
(The third setup option usually is `Normal', where no translation is
involved.)
If a BIOS does not know about `Large' or `LBA', then there are
software solutions around. Disk Managers like OnTrack or EZ-Drive
replace the BIOS disk handling routines by their own. Often this is
accomplished by having the disk manager code live in the MBR and
subsequent sectors (OnTrack calls this code DDO: Dynamic Drive
Overlay), so that it is booted before any other operating system.
That is why one may have problems when booting from a floppy when a
Disk Manager has been installed.
The effect is more or less the same as with a translating BIOS - but
especially when running several different operating systems on the
same disk, disk managers can cause a lot of trouble.
Linux did support OnTrack Disk Manager since version 1.3.14, and EZ-
Drive since version 1.3.29. Some more details are given in the next
section.
In 2.5.70 the automatic disk manager support was removed. Instead,
two boot options were added: "hda=remap" to do the EZ-Drive remapping
of sector 0 to sector 1, and "hda=remap63" to do the OnTrack Disk
Manager shift over 63 sectors.
8. Kernel disk translation for IDE disks
If the Linux kernel detects the presence of some disk manager on an
IDE disk, it will try to remap the disk in the same way this disk
manager would have done, so that Linux sees the same disk partitioning
as for example DOS with OnTrack or EZ-Drive. However, NO remapping is
done when a geometry was specified on the command line - so a
`hd=cyls,heads,secs' command line option might well kill compatibility
with a disk manager.
If you are hit by this, and know someone who can compile a new kernel
for you, find the file linux/drivers/block/ide.c and remove in the
routine ide_xlate_1024() the test if (drive->forced_geom) { ...;
return 0; }.
The remapping is done by trying 4, 8, 16, 32, 64, 128, 255 heads
(keeping H*C constant) until either C <= 1024 or H = 255.
The details are as follows - subsection headers are the strings
appearing in the corresponding boot messages. Here and everywhere
else in this text partition types are given in hexadecimal.
8.1. EZD
EZ-Drive is detected by the fact that the first primary partition has
type 55. The geometry is remapped as described above, and the
partition table from sector 0 is discarded - instead the partition
table is read from sector 1. Disk block numbers are not changed, but
writes to sector 0 are redirected to sector 1. This behaviour can be
changed by recompiling the kernel with
#define FAKE_FDISK_FOR_EZDRIVE 0 in ide.c.
8.2. DM6:DDO
OnTrack DiskManager (on the first disk) is detected by the fact that
the first primary partition has type 54. The geometry is remapped as
described above and the entire disk is shifted by 63 sectors (so that
the old sector 63 becomes sector 0). Afterwards a new MBR (with
partition table) is read from the new sector 0. Of course this shift
is to make room for the DDO - that is why there is no shift on other
disks.
8.3. DM6:AUX
OnTrack DiskManager (on other disks) is detected by the fact that the
first primary partition has type 51 or 53. The geometry is remapped
as described above.
8.4. DM6:MBR
An older version of OnTrack DiskManager is detected not by partition
type, but by signature. (Test whether the offset found in bytes 2 and
3 of the MBR is not more than 430, and the short found at this offset
equals 0x55AA, and is followed by an odd byte.) Again the geometry is
remapped as above.
8.5. PTBL
Finally, there is a test that tries to deduce a translation from the
start and end values of the primary partitions: If some partition has
start and end sector number 1 and 63, respectively, and end heads 31,
63, 127 or 254, then, since it is customary to end partitions on a
cylinder boundary, and since moreover the IDE interface uses at most
16 heads, it is conjectured that a BIOS translation is active, and the
geometry is remapped to use 32, 64, 128 or 255 heads, respectively.
However, no remapping is done when the current idea of the geometry
already has 63 sectors per track and at least as many heads (since
this probably means that a remapping was done already).
8.6. Getting rid of a disk manager
When Linux detects OnTrack Disk Manager, it will shift all disk
accesses by 63 sectors. Similarly, when Linux detects EZ-Drive, it
shifts all accesses of sector 0 to sector 1. This means that it may
be difficult to get rid of these disk managers. Most disk managers
have an uninstall option, but if you need to remove some disk manager
an approach that often works is to give an explicit disk geometry on
the command line. Now Linux skips the ide_xlate_1024() routine, and
one can wipe out the partition table with disk manager (and probably
lose access to all disk data) with the command
dd if=/dev/zero of=/dev/hdx bs=512 count=1
The details depend a little on kernel version. Recent kernels (since
2.3.21) recognize boot parameters like "hda=remap" and "hdb=noremap",
so that it is possible to get or avoid the EZD shift regardless of the
contents of the partition table. The "hdX=noremap" boot parameter also
avoids the OnTrack Disk Manager shift.
8.7. Since 2.5.70: boot parameters
In 2.5.70 the automatic disk manager support was removed. Instead,
two boot options were added: "hda=remap" to do the EZ-Drive remapping
of sector 0 to sector 1, and "hda=remap63" to do the OnTrack Disk
Manager shift over 63 sectors.
This also means that it no longer is a problem to get rid of a disk
manager.
9. Consequences
What does all of this mean? For Linux users only one thing: that they
must make sure that LILO and fdisk use the right geometry where
`right' is defined for fdisk as the geometry used by the other
operating systems on the same disk, and for LILO as the geometry that
will enable successful interaction with the BIOS at boot time.
(Usually these two coincide.)
How does fdisk know about the geometry? There are three sources of
information. First, if the user has specified the geometry
interactively or on the command line, then we take the user input.
Second, if it is possible to guess the geometry used from the
partition table, then we use that. Third, when nothing else is
available, fdisk asks the kernel, using the HDIO_GETGEO ioctl.
How does LILO know about the geometry? It asks the kernel, using the
HDIO_GETGEO ioctl. But the user can override the geometry using the
`disk=' option in /etc/lilo.conf (see lilo.conf(5)). One may also
give the linear option to LILO, and it will store LBA addresses
instead of CHS addresses in its map file, and find out of the geometry
to use at boot time (by using INT 13 Function 8 to ask for the drive
geometry).
How does the kernel know what to answer? Well, first of all, the user
may have specified an explicit geometry with a `hda=cyls,heads,secs'
kernel command line option (see bootparam(7)), perhaps by hand, or by
asking the boot loader to supply such an option to the kernel. For
example, one can tell LILO to supply such an option by adding an
`append = "hda=cyls,heads,secs"' line in /etc/lilo.conf (see
lilo.conf(5)). And otherwise the kernel will guess, possibly using
values obtained from the BIOS or the hardware.
Note that values guessed by the kernel are very unreliable. The
kernel does not have a good way of finding out what values the BIOS
uses, or indeed whether the disk is known to the BIOS at all.
It is possible (since Linux 2.1.79) to change the kernel's ideas about
the geometry by using the /proc filesystem. For example
# sfdisk -g /dev/hdc
/dev/hdc: 4441 cylinders, 255 heads, 63 sectors/track
# cd /proc/ide/ide1/hdc
# echo bios_cyl:17418 bios_head:128 bios_sect:32 > settings
# sfdisk -g /dev/hdc
/dev/hdc: 17418 cylinders, 128 heads, 32 sectors/track
#
This is especially useful if you need so many boot parameters that you
overflow LILO's (very limited) command line length. (It also helps if
you want to influence a utility that gets its idea of the geometry
from the kernel via the HDIO_GETGEO ioctl.)
Since Linux 2.6.5 the kernel will (when compiled with CONFIG_EDD) ask
the BIOS for legacy_cylinders, legacy_heads, legacy_sectors using INT
13/AH=08h. The values obtained are made available in
/sys/firmware/edd/int13_dev{80,81,82,83}/legacy_*. In 2.6.5 the files
were legacy_{cylinders,heads,sectors} (with contents in hex, e.g. 0xfe
for 254), but those names are confusing, and in 2.6.7 they were
changed to legacy_max_cylinder, legacy_max_head,
legacy_sectors_per_track (with contents in decimal). A geometry like
C/H/S=1000/255/63 is found here as 999, 254, 63.
# insmod edd.ko
# cd /sys/firmware/edd/int13_dev83
# cat legacy_max_head
254
# cat sectors
120064896
#
Thus, we see here a disk with 255 heads and 120064896 sectors in all.
Careful comparison shows that this is /dev/hdf.
How does the BIOS know about the geometry? The user may have
specified it in the CMOS setup. Or the geometry is read from the
disk, and possibly translated as specified in the setup. In the case
of SCSI disks, where no geometry exists, the geometry that the BIOS
has to invent can often be specified by jumpers or setup options. (For
example, Adaptec controllers have the possibility to choose between
the usual H=64, S=32 and the `extended translation' H=255, S=63.)
Sometimes the BIOS reads the partition table to see with what geometry
the disk was last partitioned - it will assume that a valid partition
table is present when the 55aa signature is present. This is good, in
that it allows moving disks to a different machine. But having the
BIOS behaviour depend on the disk contents also causes strange
problems. (For example, it has been reported that a 2.5 GB disk was
seen as having 528 MB because the BIOS read the partition table and
concluded that it should use untranslated CHS. Another effect is found
in the report that unpartitioned disks were slower than partitioned
ones, because the BIOS tested 32-bit mode by reading the MBR and
seeing whether it correctly got the 55aa signature.)
How does the disk know about the geometry? Well, the manufacturer
invents a geometry that multiplies out to approximately the right
capacity. Many disks have jumpers that change the reported geometry,
in order to avoid BIOS bugs. For example, all IBM disks allow the
user to choose between 15 and 16 heads, and many manufacturers add
jumpers to make the disk seem smaller than 2.1 GB or 33.8 GB. See also
``below''. Sometimes there are utilities that change the disk
firmware.
9.1. Computing LILO parameters
Sometimes it is useful to force a certain geometry by adding
`hda=cyls,heads,secs' on the kernel command line. Almost always one
wants secs=63, and the purpose of adding this is to specify heads.
(Reasonable values today are heads=16 and heads=255.) What should one
specify for cyls? Precisely that number that will give the right total
capacity of C*H*S sectors. For example, for a drive with 71346240
sectors (36529274880 bytes) one would compute C as
71346240/(255*63)=4441 (for example using the program bc), and give
boot parameter hdc=4441,255,63. How does one know the right total
capacity? For example,
# hdparm -g /dev/hdc | grep sectors
geometry = 4441/255/63, sectors = 71346240, start = 0
# hdparm -i /dev/hdc | grep LBAsects
CurCHS=16383/16/63, CurSects=16514064, LBA=yes, LBAsects=71346240
gives two ways of finding the total number of sectors 71346240.
Recent kernels also give the precise size in the boot messages:
# dmesg | grep hde
hde: Maxtor 93652U8, ATA DISK drive
hde: 71346240 sectors (36529 MB) w/2048KiB Cache, CHS=70780/16/63
hde: hde1 hde2 hde3 < hde5 > hde4
hde2: <bsd: hde6 hde7 hde8 hde9 >
Older kernels only give MB and CHS. In general the CHS value is
rounded down, so that the above output tells us that there are at
least 70780*16*63=71346240 sectors. In this example that happens to be
the precise value. The MB value may be rounded instead of truncated,
and in old kernels may be `binary' (MiB) instead of decimal. Note the
agreement between the kernel size in MB and the Maxtor model number.
Also in the case of SCSI disks the precise number of sectors is given
in the kernel boot messages:
SCSI device sda: 17755792 512-byte hdwr sectors (9091 MB)
10. Details
10.1. IDE details - the seven geometries
The IDE driver has five sources of information about the geometry.
The first (G_user) is the one specified by the user on the command
line. The second (G_bios) is the BIOS Fixed Disk Parameter Table (for
first and second disk only) that is read on system startup, before the
switch to 32-bit mode. The third (G_phys) and fourth (G_log) are
returned by the IDE controller as a response to the ``IDENTIFY
command'' - they are the `physical' and `current logical' geometries.
On the other hand, the driver needs two values for the geometry: on
the one hand G_fdisk, returned by a HDIO_GETGEO ioctl, and on the
other hand G_used, which is actually used for doing I/O. Both G_fdisk
and G_used are initialized to G_user if given, to G_bios when this
information is present according to CMOS, and to G_phys otherwise. If
G_log looks reasonable then G_used is set to that. Otherwise, if
G_used is unreasonable and G_phys looks reasonable then G_used is set
to G_phys. Here `reasonable' means that the number of heads is in the
range 1-16.
To say this in other words: the command line overrides the BIOS, and
will determine what fdisk sees, but if it specifies a translated
geometry (with more than 16 heads), then for kernel I/O it will be
overridden by output of the IDENTIFY command.
Note that G_bios is rather unreliable: for systems booting from SCSI
the first and second disk may well be SCSI disks, and the geometry
that the BIOS reported for sda is used by the kernel for hda.
Moreover, disks that are not mentioned in the BIOS Setup are not seen
by the BIOS. This means that, e.g., in an IDE-only system where hdb is
not given in the Setup, the geometries reported by the BIOS for the
first and second disk will apply to hda and hdc.
In order to avoid such confusion, since Linux 2.5.51 G_bios is not
used anymore.
10.1.1. The IDENTIFY DRIVE command
When an IDE drive is sent the IDENTIFY DRIVE (0xec) command, it will
return 256 words (512 bytes) of information. This contains lots of
technical stuff. Let us only describe here what plays a role in
geometry matters. The words are numbered 0-255.
We find four pieces of information here: DefaultCHS (words 1,3,6),
CurrentCHS (words 54-58) and LBAcapacity (words 60-61) and 48-bit
capacity (words 100-103).
In the ASCII strings each word contains two characters, the high order
byte the first, the low order byte the second. The 32-bit values are
given with low order word first. Words 54-58 are set by the command
INITIALIZE DRIVE PARAMETERS (0x91). They are significant only when
CHS addressing is used, but may help to find the actual disk size in
case the disk sets DefaultCHS to 4092/16/63 in order to avoid BIOS
problems.
Sometimes, when a jumper causes a big drive to misreport LBAcapacity
(often to 66055248 sectors, in order to stay below the 33.8 GB limit),
one needs a fourth piece of information to find the actual disk size,
namely the result of the READ NATIVE MAX ADDRESS (0xf8) command.
|
| Description
|
0 | bit field: bit 6: fixed disk, bit 7: removable medium
|
1 | Default number of cylinders
3 | Default number of heads
6 | Default number of sectors per track
|
10-19 | Serial number (in ASCII)
23-26 | Firmware revision (in ASCII)
27-46 | Model name (in ASCII)
|
49 | bit field: bit 9: LBA supported
|
53 | bit field: bit 0: words 54-58 are valid
54 | Current number of cylinders
55 | Current number of heads
56 | Current number of sectors per track
57-58 | Current LBA capacity
|
60-61 | Default LBA capacity
|
82-83 | Command sets supported
|
85-86 | Command sets enabled
|
100-103 | Maximum user LBA for 48-bit addressing
|
255 | Checksum and signature (0xa5)
|
10.2. SCSI details
The situation for SCSI is slightly different, as the SCSI commands
already use logical block numbers, so a `geometry' is entirely
irrelevant for actual I/O. However, the format of the partition table
is still the same, so fdisk has to invent some geometry, and also uses
HDIO_GETGEO here - indeed, fdisk does not distinguish between IDE and
SCSI disks. As one can see from the detailed description below, the
various drivers each invent a somewhat different geometry. Indeed,
one big mess.
If you are not using DOS or so, then avoid all extended translation
settings, and just use 64 heads, 32 sectors per track (for a nice,
convenient 1 MiB per cylinder), if possible, so that no problems arise
when you move the disk from one controller to another. Some SCSI disk
drivers (aha152x, pas16, ppa, qlogicfas, qlogicisp) are so nervous
about DOS compatibility that they will not allow a Linux-only system
to use more than about 8 GiB. This is a bug.
What is the real geometry? The easiest answer is that there is no
such thing. And if there were, you wouldn't want to know, and
certainly NEVER, EVER tell fdisk or LILO or the kernel about it. It
is strictly a business between the SCSI controller and the disk. Let
me repeat that: only silly people tell fdisk/LILO/kernel about the
true SCSI disk geometry.
But if you are curious and insist, you might ask the disk itself.
There is the important command READ CAPACITY that will give the total
size of the disk, and there is the MODE SENSE command, that in the
Rigid Disk Drive Geometry Page (page 04) gives the number of cylinders
and heads (this is information that cannot be changed), and in the
Format Page (page 03) gives the number of bytes per sector, and
sectors per track. This latter number is typically dependent upon the
notch, and the number of sectors per track varies - the outer tracks
have more sectors than the inner tracks. The Linux program scsiinfo
will give this information. There are many details and complications,
and it is clear that nobody (probably not even the operating system)
wants to use this information. Moreover, as long as we are only
concerned about fdisk and LILO, one typically gets answers like
C/H/S=4476/27/171 - values that cannot be used by fdisk because the
partition table reserves only 10 resp. 8 resp. 6 bits for C/H/S.
Then where does the kernel HDIO_GETGEO get its information from?
Well, either from the SCSI controller, or by making an educated guess.
Some drivers seem to think that we want to know `reality', but of
course we only want to know what the DOS or OS/2 FDISK (or Adaptec
AFDISK, etc) will use.
Note that Linux fdisk needs the numbers H and S of heads and sectors
per track to convert LBA sector numbers into c/h/s addresses, but the
number C of cylinders does not play a role in this conversion. Some
drivers use (C,H,S) = (1023,255,63) to signal that the drive capacity
is at least 1023*255*63 sectors. This is unfortunate, since it does
not reveal the actual size, and will limit the users of most fdisk
versions to about 8 GiB of their disks - a real limitation in these
days.
In the description below, M denotes the total disk capacity, and C, H,
S the number of cylinders, heads and sectors per track. It suffices
to give H, S if we regard C as defined by M / (H*S).
By default, H=64, S=32.
aha1740, dtc, g_NCR5380, t128, wd7000:
H=64, S=32.
aha152x, pas16, ppa, qlogicfas, qlogicisp:
H=64, S=32 unless C > 1024, in which case H=255, S=63, C =
min(1023, M/(H*S)). (Thus C is truncated, and H*S*C is not an
approximation to the disk capacity M. This will confuse most
versions of fdisk.) The ppa.c code uses M+1 instead of M and
says that due to a bug in sd.c M is off by 1.
advansys:
H=64, S=32 unless C > 1024 and moreover the `> 1 GB' option in
the BIOS is enabled, in which case H=255, S=63.
aha1542:
Ask the controller which of two possible translation schemes is
in use, and use either H=255, S=63 or H=64, S=32. In the former
case there is a boot message "aha1542.c: Using extended bios
translation".
aic7xxx:
H=64, S=32 unless C > 1024, and moreover either the "extended"
boot parameter was given, or the `extended' bit was set in the
SEEPROM or BIOS, in which case H=255, S=63. In Linux 2.0.36
this extended translation would always be set in case no SEEPROM
was found, but in Linux 2.2.6 if no SEEPROM is found extended
translation is set only when the user asked for it using this
boot parameter (while when a SEEPROM is found, the boot
parameter is ignored). This means that a setup that works under
2.0.36 may fail to boot with 2.2.6 (and require the linear
keyword for LILO, or the aic7xxx=extended kernel boot
parameter).
buslogic:
H=64, S=32 unless C >= 1024, and moreover extended translation
was enabled on the controller, in which case if M < 2^22 then
H=128, S=32; otherwise H=255, S=63. However, after making this
choice for (C,H,S), the partition table is read, and if for one
of the three possibilities (H,S) = (64,32), (128,32), (255,63)
the value endH=H-1 is seen somewhere then that pair (H,S) is
used, and a boot message is printed "Adopting Geometry from
Partition Table".
fdomain:
Find the geometry information in the BIOS Drive Parameter Table,
or read the partition table and use H=endH+1, S=endS for the
first partition, provided it is nonempty, or use H=64, S=32 for
M < 2^21 (1 GiB), H=128, S=63 for M < 63*2^17 (3.9 GiB) and
H=255, S=63 otherwise.
in2000:
Use the first of (H,S) = (64,32), (64,63), (128,63), (255,63)
that will make C <= 1024. In the last case, truncate C at 1023.
seagate:
Read C,H,S from the disk. (Horrors!) If C or S is too large,
then put S=17, H=2 and double H until C <= 1024. This means
that H will be set to 0 if M > 128*1024*17 (1.1 GiB). This is a
bug.
ultrastor and u14_34f:
One of three mappings ((H,S) = (16,63), (64,32), (64,63)) is
used depending on the controller mapping mode.
If the driver does not specify the geometry, we fall back on an edu<64>
cated guess using the partition table, or using the total disk capac<61>
ity.
Look at the partition table. Since by convention partitions end on a
cylinder boundary, we can, given end = (endC,endH,endS) for any
partition, just put H = endH+1 and S = endS. (Recall that sectors are
counted from 1.) More precisely, the following is done. If there is
a nonempty partition, pick the partition with the largest beginC. For
that partition, look at end+1, computed both by adding start and
length and by assuming that this partition ends on a cylinder
boundary. If both values agree, or if endC = 1023 and start+length is
an integral multiple of (endH+1)*endS, then assume that this partition
really was aligned on a cylinder boundary, and put H = endH+1 and S =
endS. If this fails, either because there are no partitions, or
because they have strange sizes, then look only at the disk capacity
M. Algorithm: put H = M/(62*1024) (rounded up), S = M/(1024*H)
(rounded up), C = M/(H*S) (rounded down). This has the effect of
producing a (C,H,S) with C at most 1024 and S at most 62.
11. Clipped disks
11.1. The Linux IDE 8 GiB limit
The Linux IDE driver gets the geometry and capacity of a disk (and
lots of other stuff) by using an ``ATA IDENTIFY'' request. Linux
kernels older than 2.0.34/2.1.90 would not believe the returned value
of lba_capacity if it was more than 10% larger than the capacity
computed by C*H*S. However, by industry agreement large IDE disks
(with more than 16514064 sectors) return C=16383, H=16, S=63, for a
total of 16514064 sectors (7.8 GB) independent of their actual size,
but give their actual size in lba_capacity.
Since versions 2.0.34/2.1.90, Linux kernels know about this and do the
right thing. If you have an older Linux kernel and do not want to
upgrade, and this kernel only sees 8 GiB of a much larger disk, then
try changing the routine lba_capacity_is_ok in
/usr/src/linux/drivers/block/ide.c into something like
static int lba_capacity_is_ok (struct hd_driveid *id) {
id->cyls = id->lba_capacity / (id->heads * id->sectors);
return 1;
}
For a more cautious patch, see 2.1.90.
11.2. BIOS complications
As just mentioned, large disks return the geometry C=16383, H=16, S=63
independent of the actual size, while the actual size is returned in
the value of LBAcapacity. Some BIOSes do not recognize this, and
translate this 16383/16/63 into something with fewer cylinders and
more heads, for example 1024/255/63 or 1027/255/63. So, the kernel
must not only recognize the single geometry 16383/16/63, but also all
BIOS-mangled versions of it. Since 2.2.2 this is done correctly (by
taking the BIOS idea of H and S, and computing C = capacity/(H*S)).
Usually this problem is solved by setting the disk to Normal in the
BIOS setup (or, even better, to None, not mentioning it at all to the
BIOS). If that is impossible because you have to boot from it or use
it also with DOS/Windows, and upgrading to 2.2.2 or later is not an
option, use kernel boot parameters.
If a BIOS reports 16320/16/63, then this is usually done in order to
get 1024/255/63 after translation.
There is an additional problem here. If the disk was partitioned using
a geometry translation, then the kernel may at boot time see this
geometry used in the partition table, and report hda: [PTBL]
[1027/255/63]. This is bad, because now the disk is only 8.4 GB. This
was fixed in 2.3.21. Again, kernel boot parameters will help.
11.3. Jumpers that select the number of heads
Many disks have jumpers that allow you to choose between a 15-head an
a 16-head geometry. The default settings will give you a 16-head disk.
Sometimes both geometries address the same number of sectors,
sometimes the 15-head version is smaller. There may be a good reason
for this setup: Petri Kaukasoina writes: `A 10.1 Gig IBM Deskstar 16
GP (model IBM-DTTA-351010) was jumpered for 16 heads as default but
this old PC (with AMI BIOS) didn't boot and I had to jumper it for 15
heads. hdparm -i tells RawCHS=16383/15/63 and LBAsects=19807200. I use
20960/15/63 to get the full capacity.' For the jumper settings, see
http://www.hitachigst.com/hdd/support/jumpers.htm.
11.4. Jumpers that clip total capacity
Many disks have jumpers that allow you to make the disk appear smaller
than it is. A silly thing to do, and probably no Linux user ever wants
to use this, but some BIOSes crash on big disks. The usual solution is
to keep the disk entirely out of the BIOS setup. But this may be
feasible only if the disk is not your boot disk.
11.4.1. Clip to 2.1 GB
The first serious limit was the 4096 cylinder limit (that is, with 16
heads and 63 sectors/track, 2.11 GB). For example, a Fujitsu
MPB3032ATU 3.24 GB disk has default geometry 6704/15/63, but can be
jumpered to appear as 4092/16/63, and then reports LBAcapacity 4124736
sectors, so that the operating system cannot guess that it is larger
in reality. In such a case (with a BIOS that crashes if it hears how
big the disk is in reality, so that the jumper is required) one needs
boot parameters to tell Linux about the size of the disk.
That is unfortunate. Most disks can be jumpered so as to appear as a 2
GB disk and then report a clipped geometry like 4092/16/63 or
4096/16/63, but still report full LBAcapacity. Such disks will work
well, and use full capacity under Linux, regardless of jumper
settings.
11.4.2. Clip to 33 GB
A more recent limit is ``the 33.8 GB limit''. Linux kernels older
than 2.2.14 / 2.3.21 need a patch to be able to cope with IDE disks
larger than this.
With an old BIOS and a disk larger than 33.8 GB, the BIOS may hang,
and in such cases booting may be impossible, even when the disk is
removed from the CMOS settings.
Therefore, large IBM and Maxtor and Seagate disks come with a jumper
that make the disk appear as a 33.8 GB disk. For example, the IBM
Deskstar 37.5 GB (DPTA-353750) with 73261440 sectors (corresponding to
72680/16/63, or 4560/255/63) can be jumpered to appear as a 33.8 GB
disk, and then reports geometry 16383/16/63 like any big disk, but
LBAcapacity 66055248 (corresponding to 65531/16/63, or 4111/255/63).
Similar things hold for recent large Maxtor disks.
Below some more details that used to be relevant but probably can be
ignored now.
11.4.2.1. Maxtor
With the jumper present, both the geometry (16383/16/63) and the size
(66055248) are conventional and give no information about the actual
size. Moreover, attempts to access sector 66055248 and above yield
I/O errors. However, on Maxtor drives the actual size can be found
and made accessible using the READ NATIVE MAX ADDRESS and SET MAX
ADDRESS commands. Presumably this is what MaxBlast/EZ-Drive does.
There is a small Linux utility setmax.c that does the same. Only very
few disks need it - almost always CONFIG_IDEDISK_STROKE does the
trick.
For drives larger than 137 GB also READ NATIVE MAX ADDRESS returns a
conventional value, namely 0xfffffff, corresponding to 137 GB. Here
READ NATIVE MAX ADDRESS EXT and SET MAX ADDRESS EXT (using 48-bit
addressing) are required. The setmax utility does not yet know about
this. A very small patch makes 2.5.3 handle this situation.
Early large Maxtor disks have an additional detail: the J46 jumper for
these 34-40 GB disks changes the geometry from 16383/16/63 to
4092/16/63 and does not change the reported LBAcapacity. This means
that also with jumper present the BIOS (old Award 4.5*) will hang at
boot time. For this case Maxtor provides a utility JUMPON.EXE that
upgrades the firmware to make J46 behave as described above.
On recent Maxtor drives the call setmax -d 0 /dev/hdX will give you
max capacity again. However, on slightly older drives a firmware bug
does not allow you to use -d 0, and setmax -d 255 /dev/hdX returns you
to almost full capacity. For Maxtor D540X-4K, see below.
11.4.2.2. IBM
For IBM things are worse: the jumper really clips capacity and there
is no software way to get it back. The solution is not to use the
jumper but use setmax -m 66055248 /dev/hdX to software-clip the disk.
"How?" you say - "I cannot boot!". IBM gives the tip: If a system
with Award BIOS hangs during drive detection: Reboot the system and
hold the F4 key to bypass autodetection of the drive(s). If this
doesn't help, find a different computer, connect the drive to it, and
run setmax there. After doing this you go back to the first machine
and are in the same situation as with jumpered Maxtor disks: booting
works, and after getting past the BIOS either a patched kernel or a
setmax -d 0 gets you full capacity.
Thomas Charbonnel reports on a different approach: "I had a 80 GB IBM
IC35L080AVVA07-0 drive and installed IBM's Disk Manager. Installed my
boot loader on the drive's MBR. Everything worked fine. Note that the
IDE drive must become the boot drive so that one can install only one
34+ GB drive using this approach."
11.4.2.3. Seagate
Seagate disks have a jumper that will clip the reported number of
cylinders to 4092 on drives smaller than 33.8 GB, while it will limit
the reported LBA capacity (Identify words 60/61) to 33.8 GB on larger
disks.
For models ST-340810A, ST-360020A, ST-380020A: The ATA Read Native Max
and Set Max commands may be used to reset the true full capacity.
For models ST-340016A, ST-340823A, ST-340824A, ST-360021A, ST-380021A:
The ATA Set Features F1 sub-command will cause Identify Data words
60-61 to report the true full capacity.
11.4.2.4. Maxtor D540X-4K
The Maxtor Diamond Max drives 4K080H4, 4K060H3, 4K040H2 (aka D540X-4K)
are identical to the drives 4D080H4, 4D060H3, 4D040H2 (aka D540X-4D),
except that the jumper settings differ. A Maxtor FAQ specifies the
Master/Slave/CableSelect settings for them, but the capacity clip
jumper for the "4K" drives seems to be undocumented. Nils Ohlmeier
reports that he experimentally finds that it is the J42 jumper
("reserved for factory use") closest to the power connector. (The
"4D" drives use the J46 jumper, like all other Maxtor drives.)
However, it may be that this undocumented jumper acts like the IBM
jumper: the machine boots correctly, but the disk has been clipped to
33 GB and setmax -d 0 does not help to get full capacity back. And
the IBM solution works: do not use any disk-clipping jumpers, but
first put the disk in a machine with non-broken BIOS, soft-clip it
with setmax -m 66055248 /dev/hdX, then put it back in the first
machine, and after booting run setmax -d 0 /dev/hdX to get full
capacity again.
In the meantime, some docs and pictures have appeared on the Maxtor
site, confirming part of the above. Compare
11.4.2.5. Western Digital
Some info, including the settings for capacity-clipping jumpers, is
given on the Western Digital site. I do not know what precisely these
jumpers do.
11.5. READ NATIVE MAX ADDRESS / SET MAX ADDRESS
If an IDE/ATA disk has support for the Host Protected Area (HPA)
feature set, then it is possible to set the LBA capacity to any value
below the actual capacity. Access past the assigned point usually
leads to I/O errors. Since classical software finds out about the disk
size by looking at the LBA capacity field of the Identify information,
such software will not suspect that the disk actually is larger.
The actual total size of the disk is read using the READ NATIVE MAX
ADDRESS command. This "soft disk size" is set using the SET MAX
ADDRESS command. It comes in two flavours: if the "volatile" bit is
set, the command will have effect until the next reboot or hardware
reset; otherwise the effect is permanent. It is possible to protect
settings with a password. (For details, see the ATA standard.)
This clipped size has (at least) two applications: on the one hand it
is possible to fake a smaller disk, so that the BIOS will not have
problems, and have Linux, or (for DOS/Windows) a disk manager restore
total size; on the other hand one can have a vendor area at the end,
inaccessible to the ordinary user.
For many of the disks discussed above, setting a jumper has precisely
this effect: LBA capacity is diminished while the native max capacity
remains the same, and the SET MAX ADDRESS will restore full capacity.
11.6. CONFIG_IDEDISK_STROKE
The CONFIG_IDEDISK_STROKE option of Linux 2.4.19/2.5.3 and later, will
tell Linux to read the native max capacity and do a SET MAX ADDRESS to
get access to full capacity. This configuration option lives under
the heading "Auto-Geometry Resizing support" in the "IDE, ATA and
ATAPI block devices" kernel configuration section.
The configuration option went away in 2.6.7 and was replaced by a
(per-disk) boot parameter, so that one can say "hda=stroke".
With this "stroke" option jumpered disks will in many cases be handled
correctly, i.e., be seen with full capacity (in spite of the jumper).
And the same holds when the disk got a Host Protected Area in some
other (non-jumper) way.
This is the preferred way to handle disks that need a jumper because
of a broken BIOS.
12. The Linux 65535 cylinder limit
The HDIO_GETGEO ioctl returns the number of cylinders in a short.
This means that if you have more than 65535 cylinders, the number is
truncated, and (for a typical SCSI setup with 1 MiB cylinders) a 80
GiB disk may appear as a 16 GiB one. Once one recognizes what the
problem is, it is easily avoided. Use fdisk 2.10i or newer.
(The programming convention is to use the BLKGETSIZE ioctl to get
total size, and HDIO_GETGEO to get number of heads and sectors/track,
and, if needed, get C by C = size/(H*S).)
12.1. IDE problems with 34+ GB disks
(Below a discussion of Linux kernel problems. BIOS problems and
jumpers that clip capacity were discussed ``above''.)
Drives larger than 33.8 GB will not work with kernels older than
2.0.39 / 2.2.14 / 2.3.21. The details are as follows. Suppose you
bought a new IBM-DPTA-373420 disk with a capacity of 66835440 sectors
(34.2 GB). Pre-2.3.21 kernels will tell you that the size is 769*16*63
= 775152 sectors (0.4 GB), which is a bit disappointing. And giving
command line parameters hdc=4160,255,63 doesn't help at all - these
are just ignored. What happens? The routine idedisk_setup() retrieves
the geometry reported by the disk (which is 16383/16/63) and
overwrites what the user specified on the command line, so that the
user data is used only for the BIOS geometry. The routine
current_capacity() or idedisk_capacity() recomputes the cylinder
number as 66835440/(16*63)=66305, but since this is stored in a short,
it becomes 769. Since lba_capacity_is_ok() destroyed id->cyls, every
following call to it will return false, so that the disk capacity
becomes 769*16*63. For several kernels a patch is available. A patch
for 2.0.38 can be found at ftp.kernel.org. A patch for 2.2.12 can be
found at www.uwsg.indiana.edu (some editing may be required to get rid
of the html markup). The 2.2.14 kernels do support these disks. In
the 2.3.* kernel series, there is support for these disks since
2.3.21. One can also `solve' the problem in hardware by ``using a
jumper'' to clip the size to 33.8 GB. In many cases a ``BIOS
upgrade'' will be required if one wants to boot from the disk.
13. Extended and logical partitions
``Above,'' we saw the structure of the MBR (sector 0): boot loader
code followed by 4 partition table entries of 16 bytes each, followed
by an AA55 signature. Partition table entries of type 5 or F or 85
(hex) have a special significance: they describe extended partitions:
blobs of space that are further partitioned into logical partitions.
(So, an extended partition is only a box, it cannot be used itself,
one uses the logical partitions inside.) Only the location of the
first sector of an extended partition is important. This first sector
contains a partition table with four entries: one a logical partition,
one an extended partition, and two unused. In this way one gets a
chain of partition table sectors, scattered over the disk, where the
first one describes three primary partitions and the extended
partition, and each following partition table sector describes one
logical partition and the location of the next partition table sector.
It is important to understand this: When people do something stupid
while partitioning a disk, they want to know: Is my data still there?
And the answer is usually: Yes. But if logical partitions were created
then the partition table sectors describing them are written at the
beginning of these logical partitions, and data that was there before
is lost.
The program sfdisk will show the full chain. E.g.,
# sfdisk -l -x /dev/hda
Disk /dev/hda: 16 heads, 63 sectors, 33483 cylinders
Units = cylinders of 516096 bytes, blocks of 1024 bytes, counting from 0
Device Boot Start End #cyls #blocks Id System
/dev/hda1 0+ 101 102- 51376+ 83 Linux
/dev/hda2 102 2133 2032 1024128 83 Linux
/dev/hda3 2134 33482 31349 15799896 5 Extended
/dev/hda4 0 - 0 0 0 Empty
/dev/hda5 2134+ 6197 4064- 2048224+ 83 Linux
- 6198 10261 4064 2048256 5 Extended
- 2134 2133 0 0 0 Empty
- 2134 2133 0 0 0 Empty
/dev/hda6 6198+ 10261 4064- 2048224+ 83 Linux
- 10262 16357 6096 3072384 5 Extended
- 6198 6197 0 0 0 Empty
- 6198 6197 0 0 0 Empty
...
/dev/hda10 30581+ 33482 2902- 1462576+ 83 Linux
- 30581 30580 0 0 0 Empty
- 30581 30580 0 0 0 Empty
- 30581 30580 0 0 0 Empty
#
It is possible to construct bad partition tables. Many kernels get
into a loop if some extended partition points back to itself or to an
earlier partition in the chain. It is possible to have two extended
partitions in one of these partition table sectors so that the
partition table chain forks. (This can happen for example with an
fdisk that does not recognize each of 5, F, 85 as an extended
partition, and creates a 5 next to an F.) No standard fdisk type
program can handle such situations, and some handwork is required to
repair them. The Linux kernel will accept a fork at the outermost
level. That is, you can have two chains of logical partitions.
Sometimes this is useful - for example, one can use type 5 and be seen
by DOS, and the other type 85, invisible for DOS, so that DOS FDISK
will not crash because of logical partitions past cylinder 1024.
Usually one needs sfdisk to create such a setup.
14. Problem solving
Many people think they have problems, while in fact nothing is wrong.
Or, they think that the problems they have are due to disk geometry,
while in fact disk geometry has nothing to do with the matter. All of
the above may have sounded complicated, but disk geometry handling is
extremely easy: do nothing at all, and all is fine; or perhaps give
LILO the keyword lba32 if it doesn't get past `LI' when booting. Watch
the kernel boot messages, and remember: the more you fiddle with
geometries (specifying heads and cylinders to LILO and fdisk and on
the kernel command line) the less likely it is that things will work.
Roughly speaking, all is fine by default.
And remember: nowhere in Linux is disk geometry used, so no problem
you have while running Linux can be caused by disk geometry. Indeed,
disk geometry is used only by LILO and by fdisk. So, if LILO fails to
boot the kernel, that may be a geometry problem. If different
operating systems do not understand the partition table, that may be a
geometry problem. Nothing else. In particular, if mount doesnt seem to
work, never worry about disk geometry - the problem is elsewhere.
14.1. Problem: My IDE disk gets a bad geometry when I boot from SCSI.
It is quite possible that a disk gets the wrong geometry. The Linux
kernel asks the BIOS about hd0 and hd1 (the BIOS drives numbered 80H
and 81H) and assumes that this data is for hda and hdb. But on a
system that boots from SCSI, the first two disks may well be SCSI
disks, and thus it may happen that the fifth disk, which is the first
IDE disk hda, gets assigned a geometry belonging to sda. Such things
are easily solved by giving boot parameters `hda=C,H,S' for the
appropriate numbers C, H and S, either at boot time or in
/etc/lilo.conf.
Since Linux 2.5.51 this BIOS information is not used anymore, and the
same problem occurs for all disks. See below.
14.2. Nonproblem: Identical disks have different geometry?
`I have two identical 10 GB IBM disks. However, fdisk gives different
sizes for them. Look:
# fdisk -l /dev/hdb
Disk /dev/hdb: 255 heads, 63 sectors, 1232 cylinders
Units = cylinders of 16065 * 512 bytes
Device Boot Start End Blocks Id System
/dev/hdb1 1 1232 9896008+ 83 Linux native
# fdisk -l /dev/hdd
Disk /dev/hdd: 16 heads, 63 sectors, 19650 cylinders
Units = cylinders of 1008 * 512 bytes
Device Boot Start End Blocks Id System
/dev/hdd1 1 19650 9903568+ 83 Linux native
How come?'
What is happening here? Well, first of all these drives really are
10gig: hdb has size 255*63*1232*512 = 10133544960, and hdd has size
16*63*19650*512 = 10141286400, so, nothing is wrong and the kernel
sees both as 10.1 GB. Why the difference in size? That is because the
kernel gets data for the first two IDE disks from the BIOS, and the
BIOS has remapped hdb to have 255 heads (and 16*19650/255=1232
cylinders). The rounding down here costs almost 8 MB.
If you would like to remap hdd in the same way, give the kernel boot
parameters `hdd=1232,255,63'.
On the other hand, if the disk is not shared with DOS or so, it may be
better to set hdb to Normal in the BIOS setup, instead of asking for
some translation like LBA.
Since Linux 2.5.51, the IDE driver no longer uses BIOS info on the
first two disks, and the different treatment of the first two disks
has disappeared.
14.3. 2.6 reports the wrong geometry? 2.6 reports no geometry at all?
Problem: 2.4 and 2.6 report different geometries?
Since geometry does not exist, it is not surprising that each of
2.0/2.2/2.4/2.6 reports a somewhat different disk geometry.
Some people will maintain that geometry *does* exist, and in that case
do not mean a property of the disk, but mean the values reported by
the BIOS. That is what several other operating systems will use. Since
Linux 2.5.51, the kernel no longer uses the values reported by the
BIOS - it is difficult to match BIOS device numbers with Linux disk
names, maybe data is only available for two disks, maybe some disks
are not present in the BIOS setup, etc. However, if one needs these
values, since Linux 2.6.5 one can set CONFIG_EDD and mount sysfs, and
then find the BIOS data for the various disks under
/sys/firmware/edd/int13_dev*. Now the matching of BIOS numbers,
represented in directory names like int13_dev82, with Linux names like
sda can be done by user space software, possibly with help from the
user.
This 2.5.51 change caused problems when many people using both Linux
and Windows on the same disk upgraded from 2.4 to 2.6 and used as
partitioning tool the program parted that had not yet been updated. I
have not checked whether current parted is OK.
14.4. Nonproblem: fdisk sees much more room than df?
fdisk will tell you how many blocks there are on the disk. If you
make a filesystem on the disk, say with mke2fs, then this filesystem
needs some space for bookkeeping - typically something like 4% of the
filesystem size, more if you ask for a lot of inodes during mke2fs.
For example:
# sfdisk -s /dev/hda9
4095976
# mke2fs -i 1024 /dev/hda9
mke2fs 1.12, 9-Jul-98 for EXT2 FS 0.5b, 95/08/09
...
204798 blocks (5.00%) reserved for the super user
...
# mount /dev/hda9 /somewhere
# df /somewhere
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hda9 3574475 13 3369664 0% /mnt
# df -i /somewhere
Filesystem Inodes IUsed IFree %IUsed Mounted on
/dev/hda9 4096000 11 4095989 0% /mnt
#
We have a partition with 4095976 blocks, make an ext2 filesystem on
it, mount it somewhere and find that it only has 3574475 blocks -
521501 blocks (12%) was lost to inodes and other bookkeeping. Note
that the difference between the total 3574475 and the 3369664 avail<69>
able to the user are the 13 blocks in use plus the 204798 blocks
reserved for root. This latter number can be changed by tune2fs. This
`-i 1024' is only reasonable for news spools and the like, with lots
and lots of small files. The default would be:
# mke2fs /dev/hda9
# mount /dev/hda9 /somewhere
# df /somewhere
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hda9 3958475 13 3753664 0% /mnt
# df -i /somewhere
Filesystem Inodes IUsed IFree %IUsed Mounted on
/dev/hda9 1024000 11 1023989 0% /mnt
#
Now only 137501 blocks (3.3%) are used for inodes, so that we have 384
MB more than before. (Apparently, each inode takes 128 bytes.) On the
other hand, this filesystem can have at most 1024000 files (more than
enough), against 4096000 (too much) earlier.