LDP/LDP/guide/docbook/abs-guide/random-between.sh

195 lines
5.9 KiB
Bash

#!/bin/bash
# random-between.sh
# Random number between two specified values.
# Script by Bill Gradwohl, with minor modifications by the document author.
# Corrections in lines 187 and 189 by Anthony Le Clezio.
# Used with permission.
randomBetween() {
# Generates a positive or negative random number
#+ between $min and $max
#+ and divisible by $divisibleBy.
# Gives a "reasonably random" distribution of return values.
#
# Bill Gradwohl - Oct 1, 2003
syntax() {
# Function embedded within function.
echo
echo "Syntax: randomBetween [min] [max] [multiple]"
echo
echo -n "Expects up to 3 passed parameters, "
echo "but all are completely optional."
echo "min is the minimum value"
echo "max is the maximum value"
echo -n "multiple specifies that the answer must be "
echo "a multiple of this value."
echo " i.e. answer must be evenly divisible by this number."
echo
echo "If any value is missing, defaults area supplied as: 0 32767 1"
echo -n "Successful completion returns 0, "
echo "unsuccessful completion returns"
echo "function syntax and 1."
echo -n "The answer is returned in the global variable "
echo "randomBetweenAnswer"
echo -n "Negative values for any passed parameter are "
echo "handled correctly."
}
local min=${1:-0}
local max=${2:-32767}
local divisibleBy=${3:-1}
# Default values assigned, in case parameters not passed to function.
local x
local spread
# Let's make sure the divisibleBy value is positive.
[ ${divisibleBy} -lt 0 ] && divisibleBy=$((0-divisibleBy))
# Sanity check.
if [ $# -gt 3 -o ${divisibleBy} -eq 0 -o ${min} -eq ${max} ]; then
syntax
return 1
fi
# See if the min and max are reversed.
if [ ${min} -gt ${max} ]; then
# Swap them.
x=${min}
min=${max}
max=${x}
fi
# If min is itself not evenly divisible by $divisibleBy,
#+ then fix the min to be within range.
if [ $((min/divisibleBy*divisibleBy)) -ne ${min} ]; then
if [ ${min} -lt 0 ]; then
min=$((min/divisibleBy*divisibleBy))
else
min=$((((min/divisibleBy)+1)*divisibleBy))
fi
fi
# If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.
if [ $((max/divisibleBy*divisibleBy)) -ne ${max} ]; then
if [ ${max} -lt 0 ]; then
max=$((((max/divisibleBy)-1)*divisibleBy))
else
max=$((max/divisibleBy*divisibleBy))
fi
fi
# ---------------------------------------------------------------------
# Now, to do the real work.
# Note that to get a proper distribution for the end points,
#+ the range of random values has to be allowed to go between
#+ 0 and abs(max-min)+divisibleBy, not just abs(max-min)+1.
# The slight increase will produce the proper distribution for the
#+ end points.
# Changing the formula to use abs(max-min)+1 will still produce
#+ correct answers, but the randomness of those answers is faulty in
#+ that the number of times the end points ($min and $max) are returned
#+ is considerably lower than when the correct formula is used.
# ---------------------------------------------------------------------
spread=$((max-min))
# Omair Eshkenazi points out that this test is unnecessary,
#+ since max and min have already been switched around.
[ ${spread} -lt 0 ] && spread=$((0-spread))
let spread+=divisibleBy
randomBetweenAnswer=$(((RANDOM%spread)/divisibleBy*divisibleBy+min))
return 0
# However, Paulo Marcel Coelho Aragao points out that
#+ when $max and $min are not divisible by $divisibleBy,
#+ the formula fails.
#
# He suggests instead the following formula:
# rnumber = $(((RANDOM%(max-min+1)+min)/divisibleBy*divisibleBy))
}
# Let's test the function.
min=-14
max=20
divisibleBy=3
# Generate an array of expected answers and check to make sure we get
#+ at least one of each answer if we loop long enough.
declare -a answer
minimum=${min}
maximum=${max}
if [ $((minimum/divisibleBy*divisibleBy)) -ne ${minimum} ]; then
if [ ${minimum} -lt 0 ]; then
minimum=$((minimum/divisibleBy*divisibleBy))
else
minimum=$((((minimum/divisibleBy)+1)*divisibleBy))
fi
fi
# If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.
if [ $((maximum/divisibleBy*divisibleBy)) -ne ${maximum} ]; then
if [ ${maximum} -lt 0 ]; then
maximum=$((((maximum/divisibleBy)-1)*divisibleBy))
else
maximum=$((maximum/divisibleBy*divisibleBy))
fi
fi
# We need to generate only positive array subscripts,
#+ so we need a displacement that will guarantee
#+ positive results.
disp=$((0-minimum))
for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
answer[i+disp]=0
done
# Now loop a large number of times to see what we get.
loopIt=1000 # The script author suggests 100000,
#+ but that takes a good long while.
for ((i=0; i<${loopIt}; ++i)); do
# Note that we are specifying min and max in reversed order here to
#+ make the function correct for this case.
randomBetween ${max} ${min} ${divisibleBy}
# Report an error if an answer is unexpected.
[ ${randomBetweenAnswer} -lt ${min} -o ${randomBetweenAnswer} -gt ${max} ] \
&& echo MIN or MAX error - ${randomBetweenAnswer}!
[ $((randomBetweenAnswer%${divisibleBy})) -ne 0 ] \
&& echo DIVISIBLE BY error - ${randomBetweenAnswer}!
# Store the answer away statistically.
answer[randomBetweenAnswer+disp]=$((answer[randomBetweenAnswer+disp]+1))
done
# Let's check the results
for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
[ ${answer[i+disp]} -eq 0 ] \
&& echo "We never got an answer of $i." \
|| echo "${i} occurred ${answer[i+disp]} times."
done
exit 0