LDP/LDP/guide/docbook/lkmpg/2.6/lkmpg-examples/06-UsingProcForInput/procfs.c

175 lines
4.6 KiB
C

/*
* procfs.c - create a "file" in /proc, which allows both input and output.
*/
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
#include <linux/proc_fs.h> /* Necessary because we use proc fs */
#include <asm/uaccess.h> /* for get_user and put_user */
/*
* Here we keep the last message received, to prove
* that we can process our input
*/
#define MESSAGE_LENGTH 80
static char Message[MESSAGE_LENGTH];
static struct proc_dir_entry *Our_Proc_File;
#define PROC_ENTRY_FILENAME "rw_test"
static ssize_t module_output(struct file *filp, /* see include/linux/fs.h */
char *buffer, /* buffer to fill with data */
size_t length, /* length of the buffer */
loff_t * offset)
{
static int finished = 0;
int i;
char message[MESSAGE_LENGTH + 30];
/*
* We return 0 to indicate end of file, that we have
* no more information. Otherwise, processes will
* continue to read from us in an endless loop.
*/
if (finished) {
finished = 0;
return 0;
}
/*
* We use put_user to copy the string from the kernel's
* memory segment to the memory segment of the process
* that called us. get_user, BTW, is
* used for the reverse.
*/
sprintf(message, "Last input:%s", Message);
for (i = 0; i < length && message[i]; i++)
put_user(message[i], buffer + i);
/*
* Notice, we assume here that the size of the message
* is below len, or it will be received cut. In a real
* life situation, if the size of the message is less
* than len then we'd return len and on the second call
* start filling the buffer with the len+1'th byte of
* the message.
*/
finished = 1;
return i; /* Return the number of bytes "read" */
}
static ssize_t
module_input(struct file *filp, const char *buff, size_t len, loff_t * off)
{
int i;
/*
* Put the input into Message, where module_output
* will later be able to use it
*/
for (i = 0; i < MESSAGE_LENGTH - 1 && i < len; i++)
get_user(Message[i], buff + i);
Message[i] = '\0'; /* we want a standard, zero terminated string */
return i;
}
/*
* This function decides whether to allow an operation
* (return zero) or not allow it (return a non-zero
* which indicates why it is not allowed).
*
* The operation can be one of the following values:
* 0 - Execute (run the "file" - meaningless in our case)
* 2 - Write (input to the kernel module)
* 4 - Read (output from the kernel module)
*
* This is the real function that checks file
* permissions. The permissions returned by ls -l are
* for referece only, and can be overridden here.
*/
static int module_permission(struct inode *inode, int op, struct nameidata *foo)
{
/*
* We allow everybody to read from our module, but
* only root (uid 0) may write to it
*/
if (op == 4 || (op == 2 && current->euid == 0))
return 0;
/*
* If it's anything else, access is denied
*/
return -EACCES;
}
/*
* The file is opened - we don't really care about
* that, but it does mean we need to increment the
* module's reference count.
*/
int module_open(struct inode *inode, struct file *file)
{
try_module_get(THIS_MODULE);
return 0;
}
/*
* The file is closed - again, interesting only because
* of the reference count.
*/
int module_close(struct inode *inode, struct file *file)
{
module_put(THIS_MODULE);
return 0; /* success */
}
static struct file_operations File_Ops_4_Our_Proc_File = {
.read = module_output,
.write = module_input,
.open = module_open,
.release = module_close,
};
/*
* Inode operations for our proc file. We need it so
* we'll have some place to specify the file operations
* structure we want to use, and the function we use for
* permissions. It's also possible to specify functions
* to be called for anything else which could be done to
* an inode (although we don't bother, we just put
* NULL).
*/
static struct inode_operations Inode_Ops_4_Our_Proc_File = {
.permission = module_permission, /* check for permissions */
};
/*
* Module initialization and cleanup
*/
int init_module()
{
Our_Proc_File = create_proc_entry(PROC_ENTRY_FILENAME, 0644, NULL);
if (Our_Proc_File == NULL){
printk(KERN_INFO "Error: Could not initialize /proc/test\n");
return -ENOMEM;
}
Our_Proc_File->owner = THIS_MODULE;
Our_Proc_File->proc_iops = &Inode_Ops_4_Our_Proc_File;
Our_Proc_File->proc_fops = &File_Ops_4_Our_Proc_File;
Our_Proc_File->mode = S_IFREG | S_IRUGO | S_IWUSR;
Our_Proc_File->uid = 0;
Our_Proc_File->gid = 0;
Our_Proc_File->size = 80;
return 0; /* success */
}
void cleanup_module()
{
remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root);
}