LDP/LDP/guide/docbook/lkmpg/2.6/lkmpg-examples/05-TheProcFileSystem/procfs3.c

198 lines
4.9 KiB
C

/*
* procfs3.c - create a "file" in /proc, use the file_operation way
* to manage the file.
*/
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
#include <linux/proc_fs.h> /* Necessary because we use proc fs */
#include <asm/uaccess.h> /* for copy_*_user */
#define PROC_ENTRY_FILENAME "buffer2k"
#define PROCFS_MAX_SIZE 2048
/**
* The buffer (2k) for this module
*
*/
static char procfs_buffer[PROCFS_MAX_SIZE];
/**
* The size of the data hold in the buffer
*
*/
static unsigned long procfs_buffer_size = 0;
/**
* The structure keeping information about the /proc file
*
*/
static struct proc_dir_entry *Our_Proc_File;
/**
* This funtion is called when the /proc file is read
*
*/
static ssize_t procfs_read(struct file *filp, /* see include/linux/fs.h */
char *buffer, /* buffer to fill with data */
size_t length, /* length of the buffer */
loff_t * offset)
{
static int finished = 0;
/*
* We return 0 to indicate end of file, that we have
* no more information. Otherwise, processes will
* continue to read from us in an endless loop.
*/
if ( finished ) {
printk(KERN_INFO "procfs_read: END\n");
finished = 0;
return 0;
}
finished = 1;
/*
* We use put_to_user to copy the string from the kernel's
* memory segment to the memory segment of the process
* that called us. get_from_user, BTW, is
* used for the reverse.
*/
if ( copy_to_user(buffer, procfs_buffer, procfs_buffer_size) ) {
return -EFAULT;
}
printk(KERN_INFO "procfs_read: read %lu bytes\n", procfs_buffer_size);
return procfs_buffer_size; /* Return the number of bytes "read" */
}
/*
* This function is called when /proc is written
*/
static ssize_t
procfs_write(struct file *file, const char *buffer, size_t len, loff_t * off)
{
if ( len > PROCFS_MAX_SIZE ) {
procfs_buffer_size = PROCFS_MAX_SIZE;
}
else {
procfs_buffer_size = len;
}
if ( copy_from_user(procfs_buffer, buffer, procfs_buffer_size) ) {
return -EFAULT;
}
printk(KERN_INFO "procfs_write: write %lu bytes\n", procfs_buffer_size);
return procfs_buffer_size;
}
/*
* This function decides whether to allow an operation
* (return zero) or not allow it (return a non-zero
* which indicates why it is not allowed).
*
* The operation can be one of the following values:
* 0 - Execute (run the "file" - meaningless in our case)
* 2 - Write (input to the kernel module)
* 4 - Read (output from the kernel module)
*
* This is the real function that checks file
* permissions. The permissions returned by ls -l are
* for referece only, and can be overridden here.
*/
static int module_permission(struct inode *inode, int op, struct nameidata *foo)
{
/*
* We allow everybody to read from our module, but
* only root (uid 0) may write to it
*/
if (op == 4 || (op == 2 && current->euid == 0))
return 0;
/*
* If it's anything else, access is denied
*/
return -EACCES;
}
/*
* The file is opened - we don't really care about
* that, but it does mean we need to increment the
* module's reference count.
*/
int procfs_open(struct inode *inode, struct file *file)
{
try_module_get(THIS_MODULE);
return 0;
}
/*
* The file is closed - again, interesting only because
* of the reference count.
*/
int procfs_close(struct inode *inode, struct file *file)
{
module_put(THIS_MODULE);
return 0; /* success */
}
static struct file_operations File_Ops_4_Our_Proc_File = {
.read = procfs_read,
.write = procfs_write,
.open = procfs_open,
.release = procfs_close,
};
/*
* Inode operations for our proc file. We need it so
* we'll have some place to specify the file operations
* structure we want to use, and the function we use for
* permissions. It's also possible to specify functions
* to be called for anything else which could be done to
* an inode (although we don't bother, we just put
* NULL).
*/
static struct inode_operations Inode_Ops_4_Our_Proc_File = {
.permission = module_permission, /* check for permissions */
};
/*
* Module initialization and cleanup
*/
int init_module()
{
/* create the /proc file */
Our_Proc_File = create_proc_entry(PROC_ENTRY_FILENAME, 0644, NULL);
/* check if the /proc file was created successfuly */
if (Our_Proc_File == NULL){
printk(KERN_ALERT "Error: Could not initialize /proc/%s\n",
PROC_ENTRY_FILENAME);
return -ENOMEM;
}
Our_Proc_File->owner = THIS_MODULE;
Our_Proc_File->proc_iops = &Inode_Ops_4_Our_Proc_File;
Our_Proc_File->proc_fops = &File_Ops_4_Our_Proc_File;
Our_Proc_File->mode = S_IFREG | S_IRUGO | S_IWUSR;
Our_Proc_File->uid = 0;
Our_Proc_File->gid = 0;
Our_Proc_File->size = 80;
printk(KERN_INFO "/proc/%s created\n", PROC_ENTRY_FILENAME);
return 0; /* success */
}
void cleanup_module()
{
remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root);
printk(KERN_INFO "/proc/%s removed\n", PROC_ENTRY_FILENAME);
}