LDP/LDP/guide/docbook/Linux-Filesystem-Hierarchy/proc.xml

1667 lines
84 KiB
XML

<sect1 id="proc">
<title>/proc</title>
<para>/proc is very special in that it is also a virtual filesystem.
It&#39;s sometimes referred to as a process information pseudo-file system.
It doesn&#39;t contain &#39;real&#39; files but runtime system information
(e.g. system memory, devices mounted, hardware configuration, etc). For this
reason it can be regarded as a control and information centre for the
kernel. In fact, quite a lot of system utilities are simply calls to files
in this directory. For example, &#39;lsmod&#39; is the same as &#39;cat
/proc/modules&#39; while &#39;lspci&#39; is a synonym for &#39;cat
/proc/pci&#39;. By altering files located in this directory you can even
read/change kernel parameters (sysctl) while the system is running.</para>
<para>The most distinctive thing about files in this directory is the fact
that all of them have a file size of 0, with the exception of kcore, mtrr
and self. A directory listing looks similar to the following:</para>
<para><screen>
total 525256
dr-xr-xr-x 3 root root 0 Jan 19 15:00 1
dr-xr-xr-x 3 daemon root 0 Jan 19 15:00 109
dr-xr-xr-x 3 root root 0 Jan 19 15:00 170
dr-xr-xr-x 3 root root 0 Jan 19 15:00 173
dr-xr-xr-x 3 root root 0 Jan 19 15:00 178
dr-xr-xr-x 3 root root 0 Jan 19 15:00 2
dr-xr-xr-x 3 root root 0 Jan 19 15:00 3
dr-xr-xr-x 3 root root 0 Jan 19 15:00 4
dr-xr-xr-x 3 root root 0 Jan 19 15:00 421
dr-xr-xr-x 3 root root 0 Jan 19 15:00 425
dr-xr-xr-x 3 root root 0 Jan 19 15:00 433
dr-xr-xr-x 3 root root 0 Jan 19 15:00 439
dr-xr-xr-x 3 root root 0 Jan 19 15:00 444
dr-xr-xr-x 3 daemon daemon 0 Jan 19 15:00 446
dr-xr-xr-x 3 root root 0 Jan 19 15:00 449
dr-xr-xr-x 3 root root 0 Jan 19 15:00 453
dr-xr-xr-x 3 root root 0 Jan 19 15:00 456
dr-xr-xr-x 3 root root 0 Jan 19 15:00 458
dr-xr-xr-x 3 root root 0 Jan 19 15:00 462
dr-xr-xr-x 3 root root 0 Jan 19 15:00 463
dr-xr-xr-x 3 root root 0 Jan 19 15:00 464
dr-xr-xr-x 3 root root 0 Jan 19 15:00 465
dr-xr-xr-x 3 root root 0 Jan 19 15:00 466
dr-xr-xr-x 3 root root 0 Jan 19 15:00 467
dr-xr-xr-x 3 gdm gdm 0 Jan 19 15:00 472
dr-xr-xr-x 3 root root 0 Jan 19 15:00 483
dr-xr-xr-x 3 root root 0 Jan 19 15:00 5
dr-xr-xr-x 3 root root 0 Jan 19 15:00 6
dr-xr-xr-x 3 root root 0 Jan 19 15:00 7
dr-xr-xr-x 3 root root 0 Jan 19 15:00 8
-r--r--r-- 1 root root 0 Jan 19 15:00 apm
dr-xr-xr-x 3 root root 0 Jan 19 15:00 bus
-r--r--r-- 1 root root 0 Jan 19 15:00 cmdline
-r--r--r-- 1 root root 0 Jan 19 15:00 cpuinfo
-r--r--r-- 1 root root 0 Jan 19 15:00 devices
-r--r--r-- 1 root root 0 Jan 19 15:00 dma
dr-xr-xr-x 3 root root 0 Jan 19 15:00 driver
-r--r--r-- 1 root root 0 Jan 19 15:00 execdomains
-r--r--r-- 1 root root 0 Jan 19 15:00 fb
-r--r--r-- 1 root root 0 Jan 19 15:00 filesystems
dr-xr-xr-x 2 root root 0 Jan 19 15:00 fs
dr-xr-xr-x 4 root root 0 Jan 19 15:00 ide
-r--r--r-- 1 root root 0 Jan 19 15:00 interrupts
-r--r--r-- 1 root root 0 Jan 19 15:00 iomem
-r--r--r-- 1 root root 0 Jan 19 15:00 ioports
dr-xr-xr-x 18 root root 0 Jan 19 15:00 irq
-r-------- 1 root root 536809472 Jan 19 15:00 kcore
-r-------- 1 root root 0 Jan 19 14:58 kmsg
-r--r--r-- 1 root root 0 Jan 19 15:00 ksyms
-r--r--r-- 1 root root 0 Jan 19 15:00 loadavg
-r--r--r-- 1 root root 0 Jan 19 15:00 locks
-r--r--r-- 1 root root 0 Jan 19 15:00 mdstat
-r--r--r-- 1 root root 0 Jan 19 15:00 meminfo
-r--r--r-- 1 root root 0 Jan 19 15:00 misc
-r--r--r-- 1 root root 0 Jan 19 15:00 modules
-r--r--r-- 1 root root 0 Jan 19 15:00 mounts
-rw-r--r-- 1 root root 137 Jan 19 14:59 mtrr
dr-xr-xr-x 3 root root 0 Jan 19 15:00 net
dr-xr-xr-x 2 root root 0 Jan 19 15:00 nv
-r--r--r-- 1 root root 0 Jan 19 15:00 partitions
-r--r--r-- 1 root root 0 Jan 19 15:00 pci
dr-xr-xr-x 4 root root 0 Jan 19 15:00 scsi
lrwxrwxrwx 1 root root 64 Jan 19 14:58 self -&#62; 483
-rw-r--r-- 1 root root 0 Jan 19 15:00 slabinfo
-r--r--r-- 1 root root 0 Jan 19 15:00 stat
-r--r--r-- 1 root root 0 Jan 19 15:00 swaps
dr-xr-xr-x 10 root root 0 Jan 19 15:00 sys
dr-xr-xr-x 2 root root 0 Jan 19 15:00 sysvipc
dr-xr-xr-x 4 root root 0 Jan 19 15:00 tty
-r--r--r-- 1 root root 0 Jan 19 15:00 uptime
-r--r--r-- 1 root root 0 Jan 19 15:00 version
</screen></para>
<para>Each of the numbered directories corresponds to an actual process ID.
Looking at the process table, you can match processes with the associated
process ID. For example, the process table might indicate the following for
the secure shell server:</para>
<para><screen>
# ps ax | grep sshd
439 ? S 0:00 /usr/sbin/sshd
</screen></para>
<para>Details of this process can be obtained by looking at the associated
files in the directory for this process, /proc/460. You might wonder how you
can see details of a process that has a file size of 0. It makes more sense
if you think of it as a window into the kernel. The file doesn&#39;t
actually contain any data; it just acts as a pointer to where the actual
process information resides. For example, a listing of the files in the
/proc/460 directory looks similar to the following:</para>
<para><screen>total 0
-r--r--r-- 1 root root 0 Jan 19 15:02 cmdline
lrwxrwxrwx 1 root root 0 Jan 19 15:02 cwd -&#62; /
-r-------- 1 root root 0 Jan 19 15:02 environ
lrwxrwxrwx 1 root root 0 Jan 19 15:02 exe -&#62; /usr/sbin/sshd
dr-x------ 2 root root 0 Jan 19 15:02 fd
-r--r--r-- 1 root root 0 Jan 19 15:02 maps
-rw------- 1 root root 0 Jan 19 15:02 mem
lrwxrwxrwx 1 root root 0 Jan 19 15:02 root -&#62; /
-r--r--r-- 1 root root 0 Jan 19 15:02 stat
-r--r--r-- 1 root root 0 Jan 19 15:02 statm
-r--r--r-- 1 root root 0 Jan 19 15:02 status
</screen></para>
<para>The purpose and contents of each of these files is explained below:</para>
<para><variablelist>
<varlistentry><term>/proc/PID/cmdline</term><listitem><para>Command
line arguments.</para></listitem></varlistentry><varlistentry><term>/proc/PID/cpu</term><listitem><para>Current
and last cpu in which it was executed.</para></listitem></varlistentry><varlistentry><term>/proc/PID/cwd</term><listitem><para>Link
to the current working directory.</para></listitem></varlistentry><varlistentry><term>/proc/PID/environ</term><listitem><para>Values
of environment variables.</para></listitem></varlistentry><varlistentry><term>/proc/PID/exe</term><listitem><para>Link
to the executable of this process.</para></listitem></varlistentry><varlistentry><term>/proc/PID/fd</term><listitem><para>Directory,
which contains all file descriptors.</para></listitem></varlistentry><varlistentry><term>/proc/PID/maps</term><listitem><para>Memory
maps to executables and library files.</para></listitem></varlistentry><varlistentry><term>/proc/PID/mem</term><listitem><para>Memory
held by this process.</para></listitem></varlistentry><varlistentry><term>/proc/PID/root</term><listitem><para>Link
to the root directory of this process.</para></listitem></varlistentry><varlistentry><term>/proc/PID/stat</term><listitem><para>Process
status.</para></listitem></varlistentry><varlistentry><term>/proc/PID/statm</term><listitem><para>Process
memory status information.</para></listitem></varlistentry><varlistentry><term>/proc/PID/status</term><listitem><para>Process
status in human readable form.</para></listitem></varlistentry>
</variablelist></para>
<para>Should you wish to know more, the man page for proc describes each of
the files associated with a running process ID in far greater detail.</para>
<para>Even though files appear to be of size 0, examining their contents
reveals otherwise:</para>
<para><screen># cat status</screen></para>
<para><screen>
Name: sshd
State: S (sleeping)
Tgid: 439
Pid: 439
PPid: 1
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 32
Groups:
VmSize: 2788 kB
VmLck: 0 kB
VmRSS: 1280 kB
VmData: 252 kB
VmStk: 16 kB
VmExe: 268 kB
VmLib: 2132 kB
SigPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 8000000000001000
SigCgt: 0000000000014005
CapInh: 0000000000000000
CapPrm: 00000000fffffeff
CapEff: 00000000fffffeff
</screen></para>
<para>The files in the /proc directory act very similar to the process ID
subdirectory files. For example, examining the contents of the
/proc/interrupts file displays something like the following:</para>
<para><screen># cat interrupts</screen></para>
<para><screen> CPU0
0: 32657 XT-PIC timer
1: 1063 XT-PIC keyboard
2: 0 XT-PIC cascade
8: 3 XT-PIC rtc
9: 0 XT-PIC cmpci
11: 332 XT-PIC nvidia
14: 5289 XT-PIC ide0
15: 13 XT-PIC ide1
NMI: 0
ERR: 0
</screen></para>
<para>Each of the numbers down the left-hand column represents the interrupt
that is in use. Examining the contents of the file dynamically gathers the
associated data and displays it to the screen. Most of the /proc file system
is read-only; however, some files allow kernel variable to be changed. This
provides a mechanism to actually tune the kernel without recompiling and
rebooting.</para>
<para>The procinfo utility summarizes /proc file system information into a
display similar to the following:</para>
<para><screen># /usr/bin/procinfo</screen></para>
<para><screen>Linux 2.4.18 (root@DEB) (gcc 2.95.4 20011002 ) #2 1CPU [DEB.(none)]
Memory: Total Used Free Shared Buffers Cached
Mem: 513908 107404 406504 0 2832 82180
Swap: 265032 0 265032
Bootup: Sun Jan 19 14:58:27 2003 Load average: 0.29 0.13 0.05 1/30 566
user : 0:00:10.26 2.3% page in : 74545 disk 1: 6459r 796w
nice : 0:00:00.00 0.0% page out: 9416 disk 2: 19r 0w
system: 0:00:19.55 4.5% swap in : 1
idle : 0:06:48.30 93.2% swap out: 0
uptime: 0:07:18.11 context : 22059
irq 0: 43811 timer irq 9: 0 cmpci
irq 1: 1427 keyboard irq 11: 332 nvidia
irq 2: 0 cascade [4] irq 12: 2
irq 6: 2 irq 14: 7251 ide0
irq 8: 3 rtc irq 15: 83 ide1
</screen></para>
<para><variablelist>
<varlistentry><term>/proc/apm</term><listitem><para>
Advanced power management info.</para></listitem></varlistentry>
<varlistentry><term>/proc/bus</term><listitem><para> Directory containing
bus specific information.</para></listitem></varlistentry>
<varlistentry><term>/proc/cmdline</term><listitem><para> Kernel command
line.</para></listitem></varlistentry>
<varlistentry><term>/proc/cpuinfo</term><listitem><para>
Information about the processor, such as its type, make, model, and
performance.</para></listitem></varlistentry>
<varlistentry><term>/proc/devices</term><listitem><para>
List of device drivers configured into the currently running kernel (block
and character).</para></listitem></varlistentry>
<varlistentry><term>/proc/dma</term><listitem><para> Shows which DMA
channels are being used at the moment.</para></listitem></varlistentry>
<varlistentry><term>/proc/driver</term><listitem><para> Various drivers
grouped here, currently rtc</para></listitem></varlistentry>
<varlistentry><term>/proc/execdomains</term><listitem><para> Execdomains,
related to security.</para></listitem></varlistentry>
<varlistentry><term>/proc/fb</term><listitem><para> Frame Buffer devices.</para></listitem></varlistentry>
<varlistentry><term>/proc/filesystems</term><listitem><para> Filesystems
configured/supported into/by the kernel.</para></listitem></varlistentry>
<varlistentry><term>/proc/fs</term><listitem><para> File system parameters,
currently nfs/exports.</para></listitem></varlistentry>
<varlistentry><term>/proc/ide</term><listitem><para> This subdirectory
contains information about all IDE devices of which the kernel is aware.
There is one subdirectory for each IDE controller, the file drivers and a
link for each IDE device, pointing to the device directory in the
controller-specific subtree. The file drivers contains general information
about the drivers used for the IDE devices. More detailed information can be
found in the controller-specific subdirectories. These are named ide0, ide1
and so on. Each of these directories contains the files shown here:
<variablelist>
<varlistentry><term>/proc/ide/ide?/channel</term><listitem><para> IDE
channel (0 or 1)</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/config</term><listitem><para>
Configuration (only for PCI/IDE bridge)</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/mate</term><listitem><para> Mate name
(onchip partnered controller)</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model</term><listitem><para> Type/Chipset
of IDE controller</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>
Each device connected to a controller has a separate subdirectory in the controllers
directory. The following files listed are contained in these directories:</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model/cache</term><listitem><para>
The cache.</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model/capacity</term><listitem><para>
Capacity of the medium (in 512Byte blocks)</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model/driver</term><listitem><para>
driver and version</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model/geometry</term><listitem><para>
physical and logical geometry</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model/identify</term><listitem><para>
device identify block</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model/media</term><listitem><para> media
type</para></listitem></varlistentry> <varlistentry><term>/proc/ide/ide?/model/model</term><listitem><para>
device identifier</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model/settings</term><listitem><para>
device setup</para></listitem></varlistentry> <varlistentry><term>/proc/ide/ide?/model/smart_thresholds</term><listitem><para>
IDE disk management thresholds</para></listitem></varlistentry>
<varlistentry><term>/proc/ide/ide?/model/smart_values</term><listitem><para>
IDE disk management values</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/interrupts</term><listitem><para> Shows which
interrupts are in use, and how many of each there have been.
<variablelist>
<varlistentry><term></term><listitem>
<para>You can, for example, check which interrupts are currently in use
and what they are used for by looking in the file /proc/interrupts:</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para><screen># cat /proc/interrupts</screen></para></listitem></varlistentry>
<varlistentry><term></term><listitem><para><screen>
CPU0 0: 8728810
XT-PIC timer 1: 895
XT-PIC keyboard 2:
0 XT-PIC cascade 3: 531695
XT-PIC aha152x 4: 2014133
XT-PIC serial 5: 44401
XT-PIC pcnet_cs 8: 2
XT-PIC rtc 11: 8
XT-PIC i82365 12: 182918
XT-PIC PS/2 Mouse 13: 1
XT-PIC fpu 14: 1232265
XT-PIC ide0 15: 7
XT-PIC ide1 NMI: 0
</screen></para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>In 2.4 based kernels a couple of
lines were added to this file LOC &#38; ERR (this is the output of an SMP
machine):</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para><screen># cat /proc/interrupts</screen></para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>
<screen>
CPU0 CPU1
0: 1243498 1214548 IO-APIC-edge timer
1: 8949 8958 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
5: 11286 10161 IO-APIC-edge soundblaster
8: 1 0 IO-APIC-edge rtc
9: 27422 27407 IO-APIC-edge 3c503
12: 113645 113873 IO-APIC-edge PS/2 Mouse
13: 0 0 XT-PIC fpu 14: 22491 24012 IO-APIC-edge ide0
15: 2183 2415 IO-APIC-edge ide1
17: 30564 30414 IO-APIC-level eth0
18: 177 164 IO-APIC-level bttv NMI: 2457961 2457959
LOC: 2457882 2457881 ERR: 2155
</screen>
</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>NMI is incremented in this
case because every timer interrupt generates a NMI (Non Maskable Interrupt)
which is used by the NMI Watchdog to detect lookups.</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>LOC is the
local interrupt counter of the internal APIC of every CPU.</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>ERR is incremented in the case of errors in the IO-APIC bus (the bus
that connects the CPUs in an SMP system. This means that an error has been
detected, the IO-APIC automatically retries the transmission, so it should
not be a big problem, but you should read the SMP-FAQ.</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>In this
context it could be interesting to note the new irq directory in 2.4. It
could be used to set IRQ to CPU affinity, this means that you can
&#34;hook&#34; an IRQ to only one CPU, or to exclude a CPU from handling
IRQs. The contents of the irq subdir is one subdir for each IRQ, and one
file; prof_cpu_mask. For example,</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>
<screen>
# ls /proc/irq/ 0 10 12 14 16 18 2 4 6 8 prof_cpu_mask
1 11 13 15 17 19 3 5 7 9
</screen>
</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>
<screen>
# ls /proc/irq/0/ smp_affinity
</screen>
</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>The contents of the prof_cpu_mask file and each smp_affinity file for
each IRQ is the same by default:</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>
<screen>
# cat /proc/irq/0/smp_affinity
ffffffff
</screen>
</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>It&#39;s a bitmask, in which you can specify which CPUs can handle
the IRQ, you can set it by doing:</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para><screen># echo 1 &#62; /proc/irq/prof_cpu_mask</screen></para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>This means that only the first CPU will handle the IRQ, but you can
also echo 5 which means that only the first and fourth CPU can handle the
IRQ. The way IRQs are routed is handled by the IO-APIC, and its Round
Robin between all the CPUs which are allowed to handle it. As usual the
kernel has more info than you and does a better job than you, so the
defaults are the best choice for almost everyone.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/iomem</term><listitem><para> Memory map.</para></listitem></varlistentry>
<varlistentry><term>/proc/ioports</term><listitem><para> Which I/O ports are
in use at the moment.</para></listitem></varlistentry>
<varlistentry><term>/proc/irq</term><listitem><para> Masks for irq to cpu
affinity.</para></listitem></varlistentry> <varlistentry><term>/proc/isapnp</term><listitem><para>
ISA PnP (Plug&#38;Play) Info.</para></listitem></varlistentry>
<varlistentry><term>/proc/kcore</term><listitem><para> An image of the
physical memory of the system (can be ELF or A.OUT (deprecated in 2.4)).
This is exactly the same size as your physical memory, but does not really
take up that much memory; it is generated on the fly as programs access it.
(Remember: unless you copy it elsewhere, nothing under /proc takes up any
disk space at all.)</para></listitem></varlistentry>
<varlistentry><term>/proc/kmsg</term><listitem><para> Messages output by the
kernel. These are also routed to syslog.</para></listitem></varlistentry>
<varlistentry><term>/proc/ksyms</term><listitem><para> Kernel symbol table.</para></listitem></varlistentry>
<varlistentry><term>/proc/loadavg</term><listitem><para> The &#39;load
average&#39; of the system; three indicators of how much work the system has
done during the last 1, 5 &#38; 15 minutes.</para></listitem></varlistentry>
<varlistentry><term>/proc/locks</term><listitem><para> Kernel locks.</para></listitem></varlistentry>
<varlistentry><term>/proc/meminfo</term><listitem><para> Information about
memory usage, both physical and swap. Concatenating this file produces
similar results to using &#39;free&#39; or the first few lines of
&#39;top&#39;.</para></listitem></varlistentry>
<varlistentry><term>/proc/misc</term><listitem><para> Miscellaneous pieces
of information. This is for information that has no real place within the
rest of the proc filesystem.</para></listitem></varlistentry>
<varlistentry><term>/proc/modules</term><listitem><para> Kernel modules
currently loaded. Typically its output is the same as that given by the
&#39;lsmod&#39; command.</para></listitem></varlistentry>
<varlistentry><term>/proc/mounts</term><listitem><para> Mounted filesystems</para></listitem></varlistentry>
<varlistentry><term>/proc/mtrr</term><listitem><para> Information regarding
mtrrs. (On Intel P6 family processors (Pentium Pro, Pentium II and later)
the Memory Type Range Registers (MTRRs) may be used to control processor
access to memory ranges. This is most useful when you have a video (VGA)
card on a PCI or AGP bus. Enabling write-combining allows bus write
transfers to be combined into a larger transfer before bursting over the
PCI/AGP bus. This can increase performance of image write operations 2.5
times or more. The Cyrix 6x86, 6x86MX and M II processors have Address Range
Registers (ARRs) which provide a similar functionality to MTRRs. For these,
the ARRs are used to emulate the MTRRs. The AMD K6-2 (stepping 8 and above)
and K6-3 processors have two MTRRs. These are supported. The AMD Athlon
family provide 8 Intel style MTRRs. The Centaur C6 (WinChip) has 8 MCRs,
allowing write-combining. These are also supported. The VIA Cyrix III and
VIA C3 CPUs offer 8 Intel style MTRRs.) For more details regarding mtrr
technology see /usr/src/linux/Documentation/mtrr.txt.</para></listitem></varlistentry>
<varlistentry><term>/proc/net</term><listitem><para> Status information
about network protocols.</para></listitem></varlistentry>
<varlistentry><term><emphasis>IPv6 information</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>/proc/net/udp6</term><listitem><para>
UDP sockets (IPv6).</para></listitem></varlistentry>
<varlistentry><term>/proc/net/tcp6</term><listitem><para> TCP sockets
(IPv6).</para></listitem></varlistentry>
<varlistentry><term>/proc/net/raw6</term><listitem><para>
Raw device statistics (IPv6).</para></listitem></varlistentry>
<varlistentry><term>/proc/net/igmp6</term><listitem><para> IP multicast
addresses, which this host joined (IPv6).</para></listitem></varlistentry>
<varlistentry><term>/proc/net/if_inet6</term><listitem><para> List of IPv6
interface addresses.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/ipv6_route</term><listitem><para> Kernel
routing table for IPv6.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/rt6_stats</term><listitem><para> Global IPv6
routing tables statistics.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/sockstat6</term><listitem><para> Socket
statistics (IPv6).</para></listitem></varlistentry>
<varlistentry><term>/proc/net/snmp6</term><listitem><para> Snmp data (IPv6).</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>General Network information</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>/proc/net/arp</term><listitem><para>
Kernel ARP table.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/dev</term><listitem><para> network devices
with statistics.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/dev_mcast</term><listitem><para> the Layer2
multicast groups which a device is listening to (interface index, label,
number of references, number of bound addresses).</para></listitem></varlistentry>
<varlistentry><term>/proc/net/dev_stat</term><listitem><para> network device
status.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/ip_fwchains</term><listitem><para>
Firewall chain linkage.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/ip_fwnames</term><listitem><para> Firewall
chain names.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/ip_masq</term><listitem><para>
Directory containing the masquerading tables.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/ip_masquerade</term><listitem><para> Major
masquerading table.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/netstat</term><listitem><para> Network
statistics.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/raw</term><listitem><para>
raw device statistics.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/route</term><listitem><para> Kernel routing
table.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/rpc</term><listitem><para>
Directory containing rpc info.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/rt_cache</term><listitem><para> Routing cache.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/snmp</term><listitem><para> SNMP data.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/sockstat</term><listitem><para> Socket
statistics.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/tcp</term><listitem><para>
TCP sockets.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/tr_rif</term><listitem><para>
Token ring RIF routing table.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/udp</term><listitem><para> UDP sockets.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/unix</term><listitem><para> UNIX domain
sockets.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/wireless</term><listitem><para>
Wireless interface data (Wavelan etc).</para></listitem></varlistentry>
<varlistentry><term>/proc/net/igmp</term><listitem><para> IP multicast
addresses, which this host joined.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/psched</term><listitem><para> Global packet
scheduler parameters.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/netlink</term><listitem><para> List of
PF_NETLINK sockets.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/ip_mr_vifs</term><listitem><para> List of
multicast virtual interfaces.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/ip_mr_cache</term><listitem><para> List of
multicast routing cache.</para> <para>You can use this information to see
which network devices are available in your system
and how much traffic was routed over those devices. In addition, each
Channel Bond interface has its own directory. For example, the bond0 device
will have a directory called /proc/net/bond0/. It will contain information
that is specific to that bond, such as the current slaves of the bond, the
link status of the slaves, and how many times the slaves link has failed.</para>
</listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/parport</term><listitem><para>
The directory /proc/parport contains information about the parallel
ports of your system. It has one subdirectory for each port,
named after the port number (0,1,2,...).
<variablelist>
<varlistentry><term>/proc/parport/autoprobe</term><listitem><para>
Any IEEE-1284 device ID information that has been acquired.</para></listitem></varlistentry>
<varlistentry><term>/proc/parport/devices</term><listitem><para> list of the
device drivers using that port. A + will appear by the name of the device
currently using the port (it might not appear against any).</para></listitem></varlistentry>
<varlistentry><term>/proc/parport/hardware</term><listitem><para> Parallel
port&#39;s base address, IRQ line and DMA channel.</para></listitem></varlistentry>
<varlistentry><term>/proc/parport/irq</term><listitem><para> IRQ that
parport is using for that port. This is in a separate file to allow you to
alter it by writing a new value in (IRQ number or none).</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/partitions</term><listitem><para> Table of
partitions known to the system</para></listitem></varlistentry>
<varlistentry><term>/proc/pci, /proc/bus/pci</term><listitem><para>
Depreciated info of PCI bus.</para></listitem></varlistentry>
<varlistentry><term>/proc/rtc</term><listitem><para> Real time clock</para></listitem></varlistentry>
<varlistentry><term>/proc/scsi</term><listitem><para> If you have a SCSI
host adapter in your system, you&#39;ll find a subdirectory named after the
driver for this adapter in /proc/scsi. You&#39;ll also see a list of all
recognized SCSI devices in /proc/scsi. The directory named after the driver
has one file for each adapter found in the system. These files contain
information about the controller, including the used IRQ and the IO address
range. The amount of information shown is dependent on the adapter you use.</para></listitem></varlistentry>
<varlistentry><term>/proc/self</term><listitem><para> A symbolic link to the
process directory of the program that is looking at /proc. When two
processes look at /proc, they get different links. This is mainly a
convenience to make it easier for programs to get at their process
directory.</para></listitem></varlistentry>
<varlistentry><term>/proc/slabinfo</term><listitem><para>
The slabinfo file gives information about memory usage at the slab level.
Linux uses slab pools for memory management above page level in version 2.2.
Commonly used objects have their own slab pool (such as network buffers,
directory cache, and so on).</para></listitem></varlistentry>
<varlistentry><term>/proc/stat</term><listitem><para> Overall/various
statistics about the system, such as the number of page faults since the
system was booted.</para></listitem></varlistentry>
<varlistentry><term>/proc/swaps</term><listitem><para> Swap space
utilization</para></listitem></varlistentry>
<varlistentry><term>/proc/sys</term><listitem><para>
This is not only a source of information, it also allows you to change
parameters within the kernel without the need for recompilation or even a
system reboot. Take care when attempting this as it can both optimize your
system and also crash it. It is advisable to read both documentation and
source before actually making adjustments. The entries in /proc may change
slightly between kernel versions, so if there is any doubt review the kernel
documentation in the directory /usr/src/linux/Documentation. Under some
circumstances, you may have no alternative but to reboot the machine once an
error occurs. To change a value, simply echo the new value into the file. An
example is given below in the section on the file system data. Of course,
you need to be &#39;root&#39; to do any of this. You can create your own
boot script to perform this every time your system boots.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/fs</term><listitem><para>Contains file system
data. This subdirectory contains specific file system, file handle, inode,
dentry and quota information.
<variablelist>
<varlistentry><term>dentry-state</term><listitem><para> Status of the
directory cache. Since directory entries are dynamically allocated and
deallocated, this file indicates the current status. It holds six values, in
which the last two are not used and are always zero. The others are listed
below:</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para><screen>
File Content
nr_dentry Almost always zero
nr_unused Number of unused cache entries
age_limit in seconds after the entry may be
reclaimed, when memory is short want_pages internally
</screen></para></listitem></varlistentry>
<varlistentry><term>dquot-max</term><listitem><para>
The file dquot-max shows the maximum number of cached disk
quota entries.</para></listitem></varlistentry>
<varlistentry><term>dquot-nr</term><listitem><para>
shows the number of allocated disk quota entries and the number of
free disk quota entries. If the number of available cached disk quotas
is very low and you have a large number of simultaneous system users,
you might want to raise the limit.</para></listitem></varlistentry>
<varlistentry><term>file-nr and file-max</term><listitem><para>
The kernel allocates file handles dynamically, but doesn&#39;t
free them again at this time. The value in file-max denotes
the maximum number of file handles that the Linux kernel will allocate. When
you get a lot of error messages about running out of file handles, you might
want to raise this limit. The default value is 4096. To change it, just
write the new number into the file:</para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para><screen>
# cat /proc/sys/fs/file-max
4096
# echo 8192 &#62; /proc/sys/fs/file-max
# cat /proc/sys/fs/file-max
8192
</screen></para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para>This method of revision is useful for all customizable parameters
of the kernel - simply echo the new value to the corresponding file.</para>
</listitem></varlistentry>
<varlistentry><term></term><listitem>
<para>The three values in file-nr denote the number of allocated file
handles, the number of used file handles, and the maximum number of
file handles. When the allocated file handles come close to the maximum,
but the number of actually used handles is far behind, you&#39;ve
encountered a peak in your usage of file handles and you don&#39;t
need to increase the maximum.</para></listitem></varlistentry>
<varlistentry><term>inode-state, inode-nr and inode-max</term><listitem><para>
As with file handles, the kernel allocates the inode
structures dynamically, but can&#39;t free them yet.</para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para>The value in inode-max denotes the maximum number of
inode handlers. This value should be 3 to 4 times larger than the
value in file-max, since stdin, stdout, and
network sockets also need an inode struct to handle them. If you regularly
run out of inodes, you should increase this value.</para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para>The file inode-nr contains the first two items from inode-state,
so we&#39;ll skip to that file...</para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para>inode-state contains three actual numbers and four dummy
values. The numbers are nr_inodes, nr_free_inodes, and preshrink (in order
of appearance).</para></listitem></varlistentry>
<varlistentry><term>nr_inodes</term><listitem><para>
Denotes the number of inodes the system has allocated. This can be
slightly more than inode-max because Linux allocates them one pageful at a time.
</para></listitem></varlistentry>
<varlistentry><term>nr_free_inodes</term><listitem><para>
Represents the number of free inodes and preshrink is nonzero when nr_inodes
is greater than inode-max and the system needs to prune the inode list
instead of allocating more.</para></listitem></varlistentry>
<varlistentry><term>super-nr and super-max</term><listitem><para>
Again, super block structures are allocated by the
kernel, but not freed. The file super-max contains the maximum number of
super block handlers, where super-nr shows the number of currently allocated
ones. Every mounted file system needs a super block, so if you plan to mount
lots of file systems, you may want to increase these numbers.
</para></listitem></varlistentry>
<varlistentry><term>binfmt_misc</term><listitem><para>
This handles the kernel support for miscellaneous binary formats.
binfmt_misc provides the ability to register additional binary formats to
the kernel without compiling an additional module/kernel. Therefore,
binfmt_misc needs to know magic numbers at the beginning or the filename
extension of the binary. It works by maintaining a linked list of structs
that contain a description of a binary format, including a magic with size
(or the filename extension), offset and mask, and the interpreter name. On
request it invokes the given interpreter with the original program as
argument, as binfmt_java and binfmt_em86 and binfmt_mz do. Since binfmt_misc
does not define any default binary-formats, you have to register an
additional binary-format. There are two general files in binfmt_misc and one
file per registered format. The two general files are register and status.
To register a new binary format you have to issue the command echo
:name:type:offset:magic:mask:interpreter: &#62; /proc/sys/fs/binfmt_misc/register
with appropriate name (the name for the /proc-dir entry), offset
(defaults to 0, if omitted), magic, mask (which can be omitted,
defaults to all 0xff) and last but not least, the interpreter
that is to be invoked (for example and testing /bin/echo). Type can be M for
usual magic matching or E for filename extension matching (give extension in
place of magic). If you do a cat on the file /proc/sys/fs/binfmt_misc/status,
you will get the current status (enabled/disabled) of binfmt_misc.
Change the status by echoing 0 (disables) or 1 (enables) or -1
(caution: this clears all previously registered binary
formats) to status. For example echo 0 &#62; status to disable binfmt_misc
(temporarily). Each registered handler has an entry in /proc/sys/fs/binfmt_misc.
These files perform the same function as status, but their scope is limited
to the actual binary format. By &#39;cating&#39; this file, you also receive
all related information about the interpreter/magic of the binfmt. An
example of the usage of binfmt_misc (emulate binfmt_java) follows:
</para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para><screen>
cd /proc/sys/fs/binfmt_misc
echo &#39;:Java:M::\xca\xfe\xba\xbe::/usr/local/java/bin/javawrapper:&#39;
&#62; register
echo &#39;:HTML:E::html::/usr/local/java/bin/appletviewer:&#39;
&#62; register
echo &#39;:Applet:M::&#60;!--applet::/usr/local/java/bin/appletviewer:&#39; &#62;
register
echo &#39;:DEXE:M::\x0eDEX::/usr/bin/dosexec:&#39; &#60; register
</screen></para>
</listitem></varlistentry>
<varlistentry><term></term><listitem>
<para>
These four lines add support for Java executables and Java applets (like
binfmt_java, additionally recognizing the .html extension with no need to
put &#60;!--applet&#62; to every applet file). You have to install the JDK
and the shell-script /usr/local/java/bin/javawrapper too. It works around
the brokenness of the Java filename handling. To add a Java binary, just
create a link to the class-file somewhere in the path.</para>
</listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel</term><listitem><para> This directory
reflects general kernel behaviors and the contents will be dependent upon
your configuration. Here you&#39;ll find the most important files, along
with descriptions of what they mean and how to use them.
<variablelist>
<varlistentry><term>/proc/sys/kernel/acct</term><listitem><para> The file
contains three values; highwater, lowwater, and frequency. It exists only
when BSD-style process accounting is enabled. These values control its
behavior. If the free space on the file system where the log lives goes
below lowwater percentage, accounting suspends. If it goes above highwater
percentage, accounting resumes. Frequency determines how often you check the
amount of free space (value is in seconds). Default settings are: 4, 2, and
30. That is, suspend accounting if there is less than 2 percent free; resume
it if we have a value of 3 or more percent; consider information about the
amount of free space valid for 30 seconds</para></listitem>
</varlistentry>
<varlistentry><term>/proc/sys/kernel/ctrl-alt-del</term><listitem><para>
When the value in this file is 0, ctrl-alt-del is trapped and sent to the
init program to handle a graceful restart. However, when the value is
greater that zero, Linux&#39;s reaction to this key combination will be an
immediate reboot, without syncing its dirty buffers. It should be noted that
when a program (like dosemu) has the keyboard in raw mode, the ctrl-alt-del
is intercepted by the program before it ever reaches the kernel tty layer,
and it is up to the program to decide what to do with it.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/domainname, /proc/sys/kernel/hostname</term><listitem><para>
These files can be controlled to set the NIS domainname and hostname of your
box. For the classic darkstar.frop.org a simple: # echo &#34;darkstar&#34;
&#62; /proc/sys/kernel/hostname # echo &#34;frop.org&#34; &#62;
/proc/sys/kernel/domainname would suffice to set your hostname and NIS
domainname. /proc/sys/kernel/osrelease, /proc/sys/kernel/ostype,
/proc/sys/kernel/version The names make it pretty obvious what these fields
contain: # cat /proc/sys/kernel/osrelease 2.2.12 # cat
/proc/sys/kernel/ostype Linux # cat /proc/sys/kernel/version #4 Fri Oct 1
12:41:14 PDT 1999 The files osrelease and ostype should be clear enough.
Version needs a little more clarification. The #4 means that this is the 4th
kernel built from this source base and the date after it indicates the time
the kernel was built. The only way to tune these values is to rebuild the
kernel.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/panic</term><listitem><para>
The value in this file represents the number of seconds the kernel waits
before rebooting on a panic. When you use the software watchdog, the
recommended setting is 60. If set to 0, the auto reboot after a kernel panic
is disabled, which is the default setting.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/printk</term><listitem><para> The four
values in printk denote * console_loglevel, * default_message_loglevel, *
minimum_console_level and * default_console_loglevel respectively. These
values influence printk() behavior when printing or logging error messages,
which come from inside the kernel. See syslog(2) for more information on the
different log levels.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/console_loglevel</term><listitem><para>
Messages with a higher priority than this will be printed to the console.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/default_message_level</term><listitem><para>
Messages without an explicit priority will be printed with this priority.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/minimum_console_loglevel</term><listitem><para>
Minimum (highest) value to which the console_loglevel can be set.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/default_console_loglevel</term><listitem><para>
Default value for console_loglevel.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/sg-big-buff</term><listitem><para> This
file shows the size of the generic SCSI (sg) buffer. At this point, you
can&#39;t tune it yet, but you can change it at compile time by editing
include/scsi/sg.h and changing the value of SG_BIG_BUFF. If you use a
scanner with SANE (Scanner Access Now Easy) you might want to set this to a
higher value. Refer to the SANE documentation on this issue.</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/kernel/modprobe</term><listitem><para> The
location where the modprobe binary is located. The kernel uses this program
to load modules on demand.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/vm</term><listitem><para>The files in this
directory can be used to tune the operation of the virtual memory (VM)
subsystem of the Linux kernel. In addition, one of the files (bdflush) has
some influence on disk usage.</para></listitem></varlistentry>
<varlistentry><term>nfract</term><listitem><para>
This parameter governs the maximum number of dirty buffers in the buffer cache.
Dirty means that the contents of the buffer still have to be written to disk
(as opposed to a clean buffer, which can just be forgotten about). Setting
this to a higher value means that Linux can delay disk writes for a long
time, but it also means that it will have to do a lot of I/O at once when
memory becomes short. A lower value will spread out disk I/O more evenly.</para></listitem></varlistentry>
<varlistentry><term>ndirty</term><listitem><para>
Ndirty gives the maximum number of dirty buffers that bdflush can
write to the disk at one time. A high value will mean delayed, bursty I/O,
while a small value can lead to memory shortage when bdflush isn&#39;t woken
up often enough.</para></listitem></varlistentry>
<varlistentry><term>nrefill</term><listitem><para>
This is the number of buffers that bdflush will add
to the list of free buffers when refill_freelist() is called. It is
necessary to allocate free buffers beforehand, since the buffers are often
different sizes than the memory pages and some bookkeeping needs to be done
beforehand. The higher the number, the more memory will be wasted and the
less often refill_freelist() will need to run.</para></listitem></varlistentry>
<varlistentry><term>nref_dirt</term><listitem><para>
When refill_freelist() comes across more than nref_dirt dirty buffers, it will
wake up bdflush.</para></listitem></varlistentry>
<varlistentry><term>age_buffer, age_super</term><listitem><para>
Finally, the age_buffer and age_super parameters govern the maximum
time Linux waits before writing out a dirty buffer to disk.
The value is expressed in jiffies (clockticks), the number
of jiffies per second is 100. Age_buffer is the maximum age for data blocks,
while age_super is for filesystems meta data.</para></listitem></varlistentry>
<varlistentry><term>buffermem</term><listitem><para>
The three values in this file control how much memory should be
used for buffer memory. The percentage is calculated as a percentage
of total system memory.
<variablelist>
<varlistentry><term></term><listitem><para>The values are:</para></listitem></varlistentry>
<varlistentry><term>min_percent</term><listitem><para>
This is the minimum percentage of memory that should be
spent on buffer memory.</para></listitem></varlistentry>
<varlistentry><term>borrow_percent</term><listitem><para>
When Linux is short on memory, and the buffer cache uses
more than it has been allotted, the memory management
(MM) subsystem will prune the buffer cache more heavily than other memory to
compensate.</para></listitem></varlistentry>
<varlistentry><term>max_percent</term><listitem><para>
This is the maximum amount of memory that can be
used for buffer memory.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>freepages</term><listitem><para>
<variablelist>
<varlistentry><term></term><listitem><para>This file contains three values: min, low and high:</para></listitem></varlistentry>
<varlistentry><term>min</term><listitem><para>
When the number of free pages in the system reaches this
number, only the kernel can allocate more memory.</para></listitem></varlistentry>
<varlistentry><term>low</term><listitem><para>
If the number of free pages falls below this point,
the kernel starts swapping aggressively.</para></listitem></varlistentry>
<varlistentry><term>high</term><listitem><para>
The kernel tries to keep up to this amount of memory free; if memory falls
below this point, the kernel starts gently swapping in the hopes that it
never has to do really aggressive swapping.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>kswapd</term><listitem><para>
Kswapd is the kernel swap out daemon. That is, kswapd is that
piece of the kernel that frees memory when it gets fragmented
or full. Since every system is different, you&#39;ll
probably want some control over this piece of the system.
<variablelist>
<varlistentry><term></term><listitem><para>The file contains three numbers:</para></listitem></varlistentry>
<varlistentry><term>tries_base</term><listitem><para>
The maximum number of pages kswapd tries to free
in one round is calculated from this number. Usually this number will be
divided by 4 or 8 (see mm/vmscan.c), so it isn&#39;t as big as it looks.
When you need to increase the bandwidth to/from swap, you&#39;ll want to
increase this number.</para></listitem></varlistentry>
<varlistentry><term>tries_min</term><listitem><para>
This is the minimum number of times kswapd
tries to free a page each time it is called. Basically it&#39;s just there
to make sure that kswapd frees some pages even when it&#39;s being called
with minimum priority.</para></listitem></varlistentry>
<varlistentry><term>swap_cluster</term><listitem><para>
This is probably the greatest influence
on system performance. swap_cluster is the number of pages kswapd writes in
one turn. You&#39;ll want this value to be large so that kswapd does its I/O
in large chunks and the disk doesn&#39;t have to seek as often, but you
don&#39;t want it to be too large since that would flood the request queue.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>overcommit_memory</term><listitem><para>
This file contains one value. The following algorithm is
used to decide if there&#39;s enough memory: if the value of
overcommit_memory is positive, then there&#39;s always enough memory. This
is a useful feature, since programs often malloc() huge amounts of memory
&#39;just in case&#39;, while they only use a small part of it. Leaving this
value at 0 will lead to the failure of such a huge malloc(), when in fact
the system has enough memory for the program to run. On the other hand,
enabling this feature can cause you to run out of memory and thrash the
system to death, so large and/or important servers will want to set this
value to 0.</para></listitem></varlistentry>
<varlistentry><term>pagecache</term><listitem><para>
This file does exactly the same job as buffermem, only
this file controls the amount of memory allowed for memory mapping and
generic caching of files. You don&#39;t want the minimum level to be too
low, otherwise your system might thrash when memory is tight or
fragmentation is high.</para></listitem></varlistentry>
<varlistentry><term>pagetable_cache</term><listitem><para>
The kernel keeps a number of page
tables in a per-processor cache (this helps a lot on SMP systems). The cache
size for each processor will be between the low and the high value. On a
low-memory, single CPU system, you can safely set these values to 0 so you
don&#39;t waste memory. It is used on SMP systems so that the system can
perform fast pagetable allocations without having to acquire the kernel
memory lock. For large systems, the settings are probably fine. For normal
systems they won&#39;t hurt a bit. For small systems ( less than 16MB ram)
it might be advantageous to set both values to 0.</para></listitem></varlistentry>
<varlistentry><term>swapctl</term><listitem><para>
<variablelist>
<varlistentry><term></term><listitem>
<para>This file contains no less than 8 variables.
All of these values are used by kswapd. The first
four variables sc_max_page_age, sc_page_advance, sc_page_decline and
sc_page_initial_age are used to keep track of Linux&#39;s page aging. Page
ageing is a bookkeeping method to track which pages of memory are often
used, and which pages can be swapped out without consequences.</para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para>When a page is swapped in, it starts at sc_page_initial_age (default 3)
and when the page is scanned by kswapd, its age is adjusted
according to the following scheme.</para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para>If the page was used since the last time we scanned, its age is
increased by sc_page_advance (default 3). Where the maximum value is given
by sc_max_page_age (default 20). Otherwise (meaning it wasn&#39;t used)
its age is decreased by sc_page_decline (default 1).</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>When a page reaches age 0, it&#39;s ready to be swapped out.</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>The variables sc_age_cluster_fract,
sc_age_cluster_min, sc_pageout_weight and sc_bufferout_weight, can be used
to control kswapd&#39;s aggressiveness in swapping out pages.</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>Sc_age_cluster_fract is used to calculate how many pages from a process are
to be scanned by kswapd. The formula used is</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>(sc_age_cluster_fract divided by 1024) times resident set size</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>So if you want kswapd to scan the whole process,
sc_age_cluster_fract needs to have a value of 1024. The minimum
number of pages kswapd will scan is represented by sc_age_cluster_min, which
is done so that kswapd will also scan small processes. The values of
sc_pageout_weight and sc_bufferout_weight are used to control how many tries
kswapd will make in order to swap out one page/buffer. These values can be
used to fine-tune the ratio between user pages and buffer/cache memory. When
you find that your Linux system is swapping out too many process pages in
order to satisfy buffer memory demands, you may want to either increase
sc_bufferout_weight, or decrease the value of sc_pageout_weight.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/dev</term><listitem><para>Device specific
parameters. Currently there is only support for CDROM drives, and for those,
there is only one read-only file containing information about the CD-ROM
drives attached to the system: &#62;cat /proc/sys/dev/cdrom/info CD-ROM
information, Id: cdrom.c 2.55 1999/04/25 drive name: sr0 hdb drive speed: 32
40 drive # of slots: 1 0 Can close tray: 1 1 Can open tray: 1 1 Can lock
tray: 1 1 Can change speed: 1 1 Can select disk: 0 1 Can read multisession:
1 1 Can read MCN: 1 1 Reports media changed: 1 1 Can play audio: 1 1 You see
two drives, sr0 and hdb, along with a list of their features.</para></listitem></varlistentry>
<varlistentry><term><emphasis>SUNRPC</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>/proc/sys/sunrpc</term><listitem><para>
This directory contains four files, which enable or disable debugging for
the RPC functions NFS, NFS-daemon, RPC and NLM. The default values are 0.
They can be set to one to turn debugging on. (The default value is 0 for
each)</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/net</term><listitem><para>
The interface to the networking parts of the kernel is located in
/proc/sys/net. The following table shows all possible subdirectories. You
may see only some of them, depending on your kernel&#39;s configuration. Our
main focus will be on IP networking since AX15, X.25, and DEC Net are only
minor players in the Linux world. Should you wish review the online
documentation and the kernel source to get a detailed view of the parameters
for those protocols not covered here. In this section we&#39;ll discuss the
subdirectories listed above. As default values are suitable for most needs,
there is no need to change these values.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>GENERAL PARAMETERS</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>/proc/sys/net/core</term><listitem><para>
Network core options</para></listitem></varlistentry>
<varlistentry><term>rmem_default</term><listitem><para>The default setting
of the socket receive buffer in bytes.</para></listitem></varlistentry>
<varlistentry><term>rmem_max</term><listitem><para>The maximum receive
socket buffer size in bytes.</para></listitem></varlistentry>
<varlistentry><term>wmem_default</term><listitem><para>The default setting
(in bytes) of the socket send buffer.</para></listitem></varlistentry>
<varlistentry><term>wmem_max</term><listitem><para>The maximum send socket
buffer size in bytes.</para></listitem></varlistentry>
<varlistentry><term>message_burst and message_cost</term><listitem><para>
These parameters are used to limit the warning messages written to the
kernel log from the networking code. They enforce a rate limit to make a
denial-of-service attack impossible. A higher message_cost factor, results
in fewer messages that will be written. Message_burst controls when messages
will be dropped. The default settings limit warning messages to one every
five seconds.</para></listitem></varlistentry>
<varlistentry><term>netdev_max_backlog</term><listitem><para>
Maximum number of packets, queued on the INPUT side, when the interface
receives packets faster than kernel can process them.</para></listitem></varlistentry>
<varlistentry><term>optmem_max</term><listitem><para>Maximum ancillary
buffer size allowed per socket. Ancillary data is a sequence of struct
cmsghdr structures with appended data.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>UNIX DOMAIN SOCKETS</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>/proc/sys/net/unix</term><listitem><para>
Parameters for Unix domain sockets</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>There are only two files in this subdirectory. They control the
delays for deleting and destroying socket descriptors.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>IPv4</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>/proc/sys/net/ipv4</term><listitem><para>IPV4 settings.
IP version 4 is still the most used protocol in Unix networking. It will be
replaced by IP version 6 in the next couple of years, but for the moment
it&#39;s the de facto standard for the internet and is used in most
networking environments around the world. Because of the importance of this
protocol, we&#39;ll have a deeper look into the subtree controlling the
behavior of the Ipv4 subsystem of the Linux kernel.</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>Let&#39;s start with the entries in /proc/sys/net/ipv4.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>ICMP settings</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>icmp_echo_ignore_all and icmp_echo_ignore_broadcasts</term><listitem><para>Turn on (1) or off (0), if the kernel should ignore all ICMP ECHO requests, or just those to
broadcast and multicast addresses.</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>Please note that if you accept ICMP echo requests with a
broadcast/multi\-cast destination address your network
may be used as an exploder for denial of service packet flooding attacks to
other hosts.</para></listitem></varlistentry>
<varlistentry><term>icmp_destunreach_rate, icmp_echoreply_rate, icmp_paramprob_rate
and icmp_timeexeed_rate</term><listitem><para>
Sets limits for sending ICMP packets to specific
targets. A value of zero disables all limiting. Any positive value sets
the maximum package rate in hundredth of a second (on
Intel systems).</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>IP settings</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>ip_autoconfig</term><listitem><para>This file contains
the number one if the host received its IP configuration by RARP, BOOTP,
DHCP or a similar mechanism. Otherwise it is zero.</para></listitem></varlistentry>
<varlistentry><term>ip_default_ttl</term><listitem><para>TTL (Time To Live)
for IPv4 interfaces. This is simply the maximum number of hops a packet may
travel.</para></listitem></varlistentry>
<varlistentry><term>ip_dynaddr</term><listitem><para>
Enable dynamic socket address rewriting on interface address change. This is
useful for dialup interface with changing IP addresses.</para></listitem></varlistentry>
<varlistentry><term>ip_forward</term><listitem><para>Enable or disable
forwarding of IP packages between interfaces. Changing this value resets all
other parameters to their default values. They differ if the kernel is
configured as host or router.</para></listitem></varlistentry>
<varlistentry><term>ip_local_port_range</term><listitem><para>Range of
ports used by TCP and UDP to choose the local port. Contains two numbers,
the first number is the lowest port, the second number the highest local
port. Default is 1024-4999. Should be changed to 32768-61000 for high-usage
systems.</para></listitem></varlistentry>
<varlistentry><term>ip_no_pmtu_disc</term><listitem><para>
Global switch to turn path MTU discovery off. It can also be set on a per
socket basis by the applications or on a per route basis.</para></listitem></varlistentry>
<varlistentry><term>ip_masq_debug</term><listitem><para> Enable/disable
debugging of IP masquerading.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>IP fragmentation settings</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>ipfrag_high_trash and ipfrag_low_trash</term><listitem><para>Maximum memory used to reassemble IP fragments. When ipfrag_high_thrash bytes of memory is allocated for this purpose, the fragment handler will toss packets until ipfrag_low_thrash is reached.</para></listitem></varlistentry>
<varlistentry><term>ipfrag_time</term><listitem><para>
Time in seconds to keep an IP fragment in memory.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>TCP settings</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>tcp_ecn</term><listitem><para>
This file controls the use of the ECN bit in the IPv4 headers, this is a new
feature about Explicit Congestion Notification, but some routers and
firewalls block traffic that has this bit set, so it could be necessary to
echo 0 to /proc/sys/net/ipv4/tcp_ecn, if you want to talk to this sites. For
more info you could read RFC2481.</para></listitem></varlistentry>
<varlistentry><term>tcp_retrans_collapse</term><listitem><para>Bug-to-bug
compatibility with some broken printers. On retransmit, try to send larger
packets to work around bugs in certain TCP stacks. Can be turned off by
setting it to zero.</para></listitem></varlistentry>
<varlistentry><term>tcp_keepalive_probes</term><listitem><para>Number of
keep alive probes TCP sends out, until it decides that the connection is
broken.</para></listitem></varlistentry> <varlistentry><term>tcp_keepalive_time</term><listitem><para>
How often TCP sends out keep alive messages, when keep alive is enabled. The
default is 2 hours.</para></listitem></varlistentry>
<varlistentry><term>tcp_syn_retries</term><listitem><para>Number of times
initial SYNs for a TCP connection attempt will be retransmitted. Should not
be higher than 255. This is only the timeout for outgoing connections, for
incoming connections the number of retransmits is defined by tcp_retries1.</para></listitem></varlistentry>
<varlistentry><term>tcp_sack</term><listitem><para>Enable select
acknowledgments after RFC2018.</para></listitem></varlistentry>
<varlistentry><term>tcp_timestamps</term><listitem><para>Enable timestamps
as defined in RFC1323.</para></listitem></varlistentry>
<varlistentry><term>tcp_stdurg</term><listitem><para>Enable the strict
RFC793 interpretation of the TCP urgent pointer field. The default is to use
the BSD compatible interpretation of the urgent pointer pointing to the
first byte after the urgent data. The RFC793 interpretation is to have it
point to the last byte of urgent data. Enabling this option may lead to
interoperability problems. Disabled by default.</para></listitem></varlistentry>
<varlistentry><term>tcp_syncookies</term><listitem><para>Only valid when
the kernel was compiled with CONFIG_SYNCOOKIES. Send out syncookies when the
syn backlog queue of a socket overflows. This is to ward off the common
&#39;syn flood attack&#39;. Disabled by default. Note that the concept of a
socket backlog is abandoned. This means the peer may not receive reliable
error messages from an over loaded server with syncookies enabled.</para></listitem></varlistentry>
<varlistentry><term>tcp_window_scaling</term><listitem><para>Enable window
scaling as defined in RFC1323.</para></listitem></varlistentry>
<varlistentry><term>tcp_fin_timeout</term><listitem><para>The length of
time in seconds it takes to receive a final FIN before the socket is always
closed. This is strictly a violation of the TCP specification, but required
to prevent denial-of-service attacks.</para></listitem></varlistentry>
<varlistentry><term>tcp_max_ka_probes</term><listitem><para>Indicates how
many keep alive probes are sent per slow timer run. Should not be set too
high to prevent bursts.</para></listitem></varlistentry>
<varlistentry><term>tcp_max_syn_backlog</term><listitem><para>Length of the
per socket backlog queue. Since Linux 2.2 the backlog specified in listen(2)
only specifies the length of the backlog queue of already established
sockets. When more connection requests arrive Linux starts to drop packets.
When syncookies are enabled the packets are still answered and the maximum
queue is effectively ignored.</para></listitem></varlistentry>
<varlistentry><term>tcp_retries1</term><listitem><para>Defines how often an
answer to a TCP connection request is retransmitted before giving up.</para></listitem></varlistentry>
<varlistentry><term>tcp_retries2</term><listitem><para>Defines how often a
TCP packet is retransmitted before giving up.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/sys/net/ipv4/conf</term><listitem><para>
<variablelist>
<varlistentry><term></term><listitem>
<para>Here you&#39;ll find one subdirectory for each interface the system knows
about and one directory called all. Changes in the all subdirectory affect all
interfaces, whereas changes in the other subdirectories affect only one
interface. All directories have the same entries:</para></listitem></varlistentry>
<varlistentry><term>accept_redirects</term><listitem><para>This switch
decides if the kernel accepts ICMP redirect messages or not. The default is
&#39;yes&#39; if the kernel is configured for a regular host and
&#39;no&#39; for a router configuration.</para></listitem></varlistentry>
<varlistentry><term>accept_source_route</term><listitem><para>Should source
routed packages be accepted or declined. The default is dependent on the
kernel configuration. It&#39;s &#39;yes&#39; for routers and &#39;no&#39;
for hosts.</para></listitem></varlistentry>
<varlistentry><term>bootp_relay</term><listitem><para>
Accept packets with source address 0.b.c.d with destinations not to this
host as local ones. It is supposed that a BOOTP relay daemon will catch and
forward such packets. The default is 0.</para></listitem></varlistentry>
<varlistentry><term>forwarding</term><listitem><para>Enable or disable IP
forwarding on this interface.</para></listitem></varlistentry>
<varlistentry><term>log_martians</term><listitem><para>Log packets with
source addresses with no known route to kernel log.</para></listitem></varlistentry>
<varlistentry><term>mc_forwarding</term><listitem><para>Do multicast
routing. The kernel needs to be compiled with CONFIG_MROUTE and a multicast
routing daemon is required.</para></listitem></varlistentry>
<varlistentry><term>proxy_arp</term><listitem><para>Does (1) or does not
(0) perform proxy ARP.</para></listitem></varlistentry>
<varlistentry><term>rp_filter</term><listitem><para>Integer value
determines if a source validation should be made. 1 means yes, 0 means no.
Disabled by default, but local/broadcast address spoofing is always on. If
you set this to 1 on a router that is the only connection for a network to
the net, it will prevent spoofing attacks against your internal networks
(external addresses can still be spoofed), without the need for additional
firewall rules.</para></listitem></varlistentry>
<varlistentry><term>secure_redirects</term><listitem><para>Accept ICMP
redirect messages only for gateways, listed in default gateway list. Enabled
by default.</para></listitem></varlistentry>
<varlistentry><term>shared_media</term><listitem><para>
If it is not set the kernel does not assume that different subnets on this
device can communicate directly. Default setting is &#39;yes&#39;.</para></listitem></varlistentry>
<varlistentry><term>send_redirects</term><listitem><para>Determines whether
to send ICMP redirects to other hosts.</para></listitem></varlistentry>
<varlistentry><term>Routing settings</term><listitem><para>The directory
/proc/sys/net/ipv4/route contains several file to control routing issues.</para></listitem></varlistentry>
<varlistentry><term>error_burst and error_cost</term><listitem><para>These
parameters are used to limit the warning messages written to the kernel log
from the routing code. The higher the error_cost factor is, the fewer
messages will be written. Error_burst controls when messages will be
dropped. The default settings limit warning messages to one every five
seconds.</para></listitem></varlistentry> <varlistentry><term>flush</term><listitem><para>
Writing to this file results in a flush of the routing cache.</para></listitem></varlistentry>
<varlistentry><term>gc_elastic, gc_interval, gc_min_interval, gc_tresh,
gc_timeout</term><listitem><para>Values to control the frequency and
behavior of the garbage collection algorithm for the routing cache.</para></listitem></varlistentry>
<varlistentry><term>max_size</term><listitem><para>Maximum size of the
routing cache. Old entries will be purged once the cache reached has this
size.</para></listitem></varlistentry> <varlistentry><term>max_delay,
min_delay</term><listitem><para> Delays for flushing the routing cache.</para></listitem></varlistentry>
<varlistentry><term>redirect_load, redirect_number</term><listitem><para>
Factors which determine if more ICPM redirects should be sent to a specific
host. No redirects will be sent once the load limit or the maximum number of
redirects has been reached.</para></listitem></varlistentry>
<varlistentry><term>redirect_silence</term><listitem><para>Timeout for
redirects. After this period redirects will be sent again, even if this has
been stopped, because the load or number limit has been reached. </para></listitem></varlistentry>
<varlistentry><term>/proc/sys/net/ipv4/neigh</term><listitem><para>Network
Neighbor handling. It contains settings about how to handle connections with
direct neighbors (nodes attached to the same link). As we saw it in the conf
directory, there is a default subdirectory which holds the default values,
and one directory for each interface. The contents of the directories are
identical, with the single exception that the default settings contain
additional options to set garbage collection parameters.</para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>In the interface directories you&#39;ll find the following entries:</para></listitem></varlistentry>
<varlistentry><term>base_reachable_time</term><listitem><para>A base value
used for computing the random reachable time value as specified in RFC2461.</para></listitem></varlistentry>
<varlistentry><term>retrans_time</term><listitem><para>The time, expressed
in jiffies (1/100 sec), between retransmitted Neighbor Solicitation
messages. Used for address resolution and to determine if a neighbor is
unreachable.</para></listitem></varlistentry>
<varlistentry><term>unres_qlen</term><listitem><para>
Maximum queue length for a pending arp request - the number of packets which
are accepted from other layers while the ARP address is still resolved.</para></listitem></varlistentry>
<varlistentry><term>anycast_delay</term><listitem><para>Maximum for random
delay of answers to neighbor solicitation messages in jiffies (1/100 sec).
Not yet implemented (Linux does not have anycast support yet).</para></listitem></varlistentry>
<varlistentry><term>ucast_solicit</term><listitem><para>Maximum number of
retries for unicast solicitation.</para></listitem></varlistentry>
<varlistentry><term>mcast_solicit</term><listitem><para>Maximum number of
retries for multicast solicitation.</para></listitem></varlistentry>
<varlistentry><term>delay_first_probe_time</term><listitem><para>Delay for
the first time probe if the neighbor is reachable. (see gc_stale_time)</para></listitem></varlistentry>
<varlistentry><term>locktime</term><listitem><para>An ARP/neighbor entry is
only replaced with a new one if the old is at least locktime old. This
prevents ARP cache thrashing.</para></listitem></varlistentry>
<varlistentry><term>proxy_delay</term><listitem><para>Maximum time (real
time is random [0..proxytime]) before answering to an ARP request for which
we have an proxy ARP entry. In some cases, this is used to prevent network
flooding.</para></listitem></varlistentry>
<varlistentry><term>proxy_qlen</term><listitem><para>
Maximum queue length of the delayed proxy arp timer. (see proxy_delay).</para></listitem></varlistentry>
<varlistentry><term>app_solcit</term><listitem><para>Determines the number
of requests to send to the user level ARP daemon. Use 0 to turn off.</para></listitem></varlistentry>
<varlistentry><term>gc_stale_time</term><listitem><para>Determines how
often to check for stale ARP entries. After an ARP entry is stale it will be
resolved again (which is useful when an IP address migrates to another
machine). When ucast_solicit is greater than 0 it first tries to send an ARP
packet directly to the known host When that fails and mcast_solicit is
greater than 0, an ARP request is broadcasted.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>APPLETALK</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term>/proc/sys/net/appletalk</term><listitem><para>
Holds the Appletalk configuration data when Appletalk is loaded. The
configurable parameters are:</para></listitem></varlistentry>
<varlistentry><term>aarp-expiry-time</term><listitem><para>
The amount of time we keep an ARP entry before expiring it. Used to age out
old hosts.</para></listitem></varlistentry>
<varlistentry><term>aarp-resolve-time</term><listitem><para>
The amount of time we will spend trying to resolve an Appletalk address.</para></listitem></varlistentry>
<varlistentry><term>aarp-retransmit-limit</term><listitem><para>
The number of times we will retransmit a query before giving up.</para></listitem></varlistentry>
<varlistentry><term>aarp-tick-time</term><listitem><para>
Controls the rate at which expires are checked.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/appletalk</term><listitem><para>Holds the
list of active Appletalk sockets on a machine. The fields indicate the DDP
type, the local address (in network:node format) the remote address, the
size of the transmit pending queue, the size of the received queue (bytes
waiting for applications to read) the state and the uid owning the socket.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/atalk_iface</term><listitem><para>lists all
the interfaces configured for appletalk. It shows the name of the interface,
its Appletalk address, the network range on that address (or network number
for phase 1 networks), and the status of the interface.</para></listitem></varlistentry>
<varlistentry><term>/proc/net/atalk_route</term><listitem><para>lists each
known network route. It lists the target (network) that the route leads to,
the router (may be directly connected), the route flags, and the device the
route is using.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term><emphasis>IPX</emphasis></term><listitem><para>
<variablelist>
<varlistentry><term></term><listitem><para>The IPX protocol has no tunable values in proc/sys/net, it does,
however, provide proc/net/ipx. This lists each IPX socket giving the local
and remote addresses in Novell format (that is network:node:port). In
accordance with the strange Novell tradition, everything but the port is in
hex. Not_Connected is displayed for sockets that are not tied to a specific
remote address. The Tx and Rx queue sizes indicate the number of bytes
pending for transmission and reception. The state indicates the state the
socket is in and the uid is the owning uid of the socket.</para></listitem></varlistentry>
<varlistentry><term>ipx_interface</term><listitem><para>Lists all IPX interfaces. For each interface it gives the network number, the node number, and indicates if the network is the
primary network. It also indicates which device it is bound to (or Internal
for internal networks) and the Frame Type if appropriate. Linux supports
802.3, 802.2, 802.2 SNAP and DIX (Blue Book) ethernet framing for IPX.</para></listitem></varlistentry>
<varlistentry><term>ipx_route</term><listitem><para>Table holding a list of IPX routes. For each route it gives
the destination network, the router node (or Directly) and the network
address of the router (or Connected) for internal networks.</para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/sysvipc</term><listitem><para>Info of SysVIPC
Resources (msg, sem, shm) (2.4)</para></listitem></varlistentry>
<varlistentry><term>/proc/tty</term><listitem><para>Information about the
available and actually used tty&#39;s can be found in the directory
/proc/tty. You&#39;ll find entries for drivers and line disciplines in this
directory.</para></listitem></varlistentry>
<varlistentry><term>/proc/tty/drivers</term><listitem><para>
list of drivers and their usage.</para></listitem></varlistentry>
<varlistentry><term>/proc/tty/ldiscs</term><listitem><para>registered line
disciplines.</para></listitem></varlistentry>
<varlistentry><term>/proc/tty/driver/serial</term><listitem><para>
usage statistic and status of single tty lines.
<variablelist>
<varlistentry><term></term><listitem>
<para>To see which tty&#39;s are currently in use, you can simply
look into the file /proc/tty/drivers:</para></listitem></varlistentry>
<varlistentry><term></term><listitem>
<para> <screen>
# cat /proc/tty/drivers
serial /dev/cua 5 64-127 serial:callout
serial /dev/ttyS 4 64-127 serial
pty_slave /dev/pts 143 0-255 pty:slave
pty_master /dev/ptm 135 0-255 pty:master
pty_slave /dev/pts 142 0-255 pty:slave
pty_master /dev/ptm 134 0-255 pty:master
pty_slave /dev/pts 141 0-255 pty:slave
pty_master /dev/ptm 133 0-255 pty:master
pty_slave /dev/pts 140 0-255 pty:slave
pty_master /dev/ptm 132 0-255 pty:master
pty_slave /dev/pts 139 0-255 pty:slave
pty_master /dev/ptm 131 0-255 pty:master
pty_slave /dev/pts 138 0-255 pty:slave
pty_master /dev/ptm 130 0-255 pty:master
pty_slave /dev/pts 137 0-255 pty:slave
pty_master /dev/ptm 129 0-255 pty:master
pty_slave /dev/pts 136 0-255 pty:slave
pty_master /dev/ptm 128 0-255 pty:master
pty_slave /dev/ttyp 3 0-255 pty:slave
pty_master /dev/pty 2 0-255 pty:master
/dev/vc/0 /dev/vc/0 4 0 system:vtmaster
/dev/ptmx /dev/ptmx 5 2 system
/dev/console /dev/console 5 1 system:console
/dev/tty /dev/tty 5 0 system:/dev/tty
unknown /dev/vc/%d 4 1-63 console
</screen></para></listitem></varlistentry>
<varlistentry><term></term><listitem><para>Note that while the above files tend to be
easily readable text files, they can sometimes be formatted in a way that is
not easily digestible. There are many commands that do little more than read
the above files and format them for easier understanding. For example, the
free program reads /proc/meminfo and converts the amounts given in bytes to
kilobytes (and adds a little more information, as well). </para></listitem></varlistentry>
</variablelist>
</para></listitem></varlistentry>
<varlistentry><term>/proc/uptime</term><listitem><para>The time the system
has been up.</para></listitem></varlistentry>
<varlistentry><term>/proc/version</term><listitem><para>
The kernel version.</para></listitem></varlistentry>
<varlistentry><term>/proc/video</term><listitem><para>BTTV info of video
resources.</para></listitem></varlistentry>
</variablelist></para>
</sect1>