diff --git a/LDP/guide/docbook/Linux-Networking/ARCnet.xml b/LDP/guide/docbook/Linux-Networking/ARCnet.xml deleted file mode 100644 index d25f37a3..00000000 --- a/LDP/guide/docbook/Linux-Networking/ARCnet.xml +++ /dev/null @@ -1,69 +0,0 @@ - - -ARCnet - - -ARCnet, developed in 1977, by Datapoint Corporation, is an older standard -that has largely been replaced by Ethernet in current networks. ARCnet, -uses RG-62 coaxial cable in a star, bus, or hybrid physical topology. This -networking scheme supports active and passive hubs, which must be connected -to an active hub. ARCnet requries 93-ohm terminators at the end of bus -cables, and on unused ports of passive hubs. It supports UTP, coaxial, or -fiber-optic cable. The distance between nodes is 400 feet with UTP cable, -and higher for coaxial or fiber-optic cable. - - - -ARCnet uses a token-passing scheme similar to that of token ring. ARCnet -networks support a bandwidth of 2.5 Mbps. Newer standards (ARCnet Plus and -TCNS) support speeds of 20 Mbps and 100 Mbps, but have not really caught on. - - - -ARCNet device names are `arc0e', `arc1e', `arc2e' etc. or `arc0s', -`arc1s', `arc2s' etc. The first card detected by the kernel is -assigned `arc0e' or `arc0s' and the rest are assigned sequentially in -the order they are detected. The letter at the end signifies whether -you've selected ethernet encapsulation packet format or RFC1051 packet -format. - - - - - Kernel Compile Options: - - Network device support ---> - [*] Network device support - <*> ARCnet support - [ ] Enable arc0e (ARCnet "Ether-Encap" packet format) - [ ] Enable arc0s (ARCnet RFC1051 packet format) - - - - -Once you have your kernel properly built to support your ethernet card -then configuration of the card is easy. - - - -Typically you would use something like: - - - - - root# ifconfig arc0e 192.168.0.1 netmask 255.255.255.0 up - root# route add -net 192.168.0.0 netmask 255.255.255.0 arc0e - - - - -Please refer to the /usr/src/linux/Documentation/networking/arcnet.txt -and /usr/src/linux/Documentation/networking/arcnet-hardware.txt files -for further information. - - - -ARCNet support on Linux was developed by Avery Pennarun, apenwarr@foxnet.net. - - - diff --git a/LDP/guide/docbook/Linux-Networking/ATM.xml b/LDP/guide/docbook/Linux-Networking/ATM.xml deleted file mode 100644 index 462e1e04..00000000 --- a/LDP/guide/docbook/Linux-Networking/ATM.xml +++ /dev/null @@ -1,32 +0,0 @@ - - -ATM - - -ATM (Asynchronous Transfer Mode), is a high speed packet switching format -that supports up to 622 Mbps. ATM can be used with T1 and T3 lines, FDDI, -and SONET OC1 and OC3 lines. ATM uses a technology called cell switching. -Data is sent in 53-byte packets called cells. Because packets are small and -uniform in size, they can be quickly routed by hardware switches. ATM uses -a virtual circuit between connection points for high reliability over -high-speed links. - - - -ATM support for Linux is currently in pre-alpha stage. There is an -experimental release, which supports raw ATM connections (PVCs and -SVCs), IP over ATM, LAN emulation.... - - - -The Linux ATM-Linux home page is at, - - - -Werner Almesberger is managing a -project to provide Asynchronous Transfer Mode support for Linux. -Current information on the status of the project may be obtained from, -http://lrcwww.epfl.ch - - - diff --git a/LDP/guide/docbook/Linux-Networking/About-the-Author.xml b/LDP/guide/docbook/Linux-Networking/About-the-Author.xml index f4c75b18..c2dd976c 100644 --- a/LDP/guide/docbook/Linux-Networking/About-the-Author.xml +++ b/LDP/guide/docbook/Linux-Networking/About-the-Author.xml @@ -44,7 +44,7 @@ Linux Documentation Project ("Linux Dictionary" and "Linux Filesystem Hierarchy", www.tldp.org/guides.html). Furthermore, they are being - used as reference books in at least nine universities around the world + used as reference books in at least ten universities around the world (University of Southern Queensland (Australia), Universidad Michoacana (Mexico), Hong Kong Polytechnic University (Hong Kong), @@ -54,6 +54,7 @@ University of Ulster (Ireland), Universität Duisburg-Essen (Germany), Universidad Rey Juan Carlos (Spain), + Insituto Superior Miguel Torga (Portugal), and Universiti Sains Malaysia (Malaysia)). As well as this, he is also a Development Lead and Project Administrator of the "Computer Dictionary Project" diff --git a/LDP/guide/docbook/Linux-Networking/Appletalk.xml b/LDP/guide/docbook/Linux-Networking/Appletalk.xml deleted file mode 100644 index 29f1827f..00000000 --- a/LDP/guide/docbook/Linux-Networking/Appletalk.xml +++ /dev/null @@ -1,266 +0,0 @@ - - -Appletalk - - -Appletalk is the network architecture/internetworking stack developed -by Apple to work with Macintosh computers. It allows a peer-to-peer -network model which provides basic functionality such as file and printer -sharing. Each machine can simultaneously act as a client and a server, -and the software and hardware necessary are included with every Apple -computer. Appletalk actually supports three network transports: -Ethernet, Token Ring, and a dedicated system called Localtalk. - - - -LocalTalk is traditionally wired in a star or hybrid topology using custom -connectors and STP cable. A popular third-party system allows ordinary phone -cable to be used instead of STP. LocalTalk supports up to 32 node per network. -The implementations of Ethernet and Token Ring (EtherTalk and TokenTalk) -support for more sophisticated networks. Localtalk uses CSMA/CA access method. -Rather than detect collisions as with Ethernet, this method requires nodes to -wait a certain amount of time after detecting an existing signal on the network -before attempting to transmit, avoiding most collisions. - - - -Linux provides full Appletalk networking. Netatalk is a kernel-level -implementation of the AppleTalk Protocol Suite, originally for BSD- -derived systems. It includes support for routing AppleTalk, serving -Unix and AFS filesystems over AFP (AppleShare), serving Unix printers -and accessing AppleTalk printers over PAP. Linux systems just show up -as another Macintosh on the network. - - - -To enable the Appletalk ( AF_APPLETALK ) protocol in the kernel -please add the following options to your kernel configuration. -The Appletalk support has no special device names as it uses -existing network devices. - - - - - Kernel Compile Options: - Networking options ---> - <*> Appletalk DDP - - - - -Appletalk support allows your Linux machine to interwork with Apple -networks. An important use for this is to share resources such as -printers and disks between both your Linux and Apple computers. -Additional software is required, this is called netatalk. Wesley Craig -netatalk@umich.edu represents a team called the `Research Systems Unix -Group' at the University of Michigan and they have produced the -netatalk package which provides software that implements the Appletalk -protocol stack and some useful utilities. The netatalk package will -either have been supplied with your Linux distribution, or you will -have to ftp it from its home site at the University of Michigan - - - -To build and install the package do something like: - - - - - user% tar xvfz .../netatalk-1.4b2.tar.Z - user% make - root# make install - - - - -You may want to edit the `Makefile' before calling make to actually -compile the software. Specifically, you might want to change the -DESTDIR variable which defines where the files will be installed -later. The default of /usr/local/atalk is fairly safe. - - -8.2.1. Configuring the Appletalk software. - - -The first thing you need to do to make it all work is to ensure that -the appropriate entries in the /etc/services file are present. The -entries you need are: - - - - - rtmp 1/ddp # Routing Table Maintenance Protocol - nbp 2/ddp # Name Binding Protocol - echo 4/ddp # AppleTalk Echo Protocol - zip 6/ddp # Zone Information Protocol - - - - -The next step is to create the Appletalk configuration files in the -/usr/local/atalk/etc directory (or wherever you installed the -package). - - - -The first file to create is the /usr/local/atalk/etc/atalkd.conf file. -Initially this file needs only one line that gives the name of the -network device that supports the network that your Apple machines are -on: - - - - - eth0 - - - - -The Appletalk daemon program will add extra details after it is run. - - -8.2.2. Exporting a Linux filesystems via Appletalk. - - -You can export filesystems from your linux machine to the network so -that Apple machine on the network can share them. - - - -To do this you must configure the -/usr/local/atalk/etc/AppleVolumes.system file. There is another -configuration file called /usr/local/atalk/etc/AppleVolumes.default -which has exactly the same format and describes which filesystems -users connecting with guest privileges will receive. - - - -Full details on how to configure these files and what the various -options are can be found in the afpd man page. - - - -A simple example might look like: - - - - - /tmp Scratch - /home/ftp/pub "Public Area" - - - - -Which would export your /tmp filesystem as AppleShare Volume `Scratch' -and your ftp public directory as AppleShare Volume `Public Area'. The -volume names are not mandatory, the daemon will choose some for you, -but it won't hurt to specify them anyway. - - -8.2.3. Sharing your Linux printer across Appletalk. - - -You can share your linux printer with your Apple machines quite -simply. You need to run the papd program which is the Appletalk -Printer Access Protocol Daemon. When you run this program it will -accept requests from your Apple machines and spool the print job to -your local line printer daemon for printing. - - - -You need to edit the /usr/local/atalk/etc/papd.conf file to configure -the daemon. The syntax of this file is the same as that of your usual -/etc/printcap file. The name you give to the definition is registered -with the Appletalk naming protocol, NBP. - - - -A sample configuration might look like: - - - - - TricWriter:\ - :pr=lp:op=cg: - - - - -Which would make a printer named `TricWriter' available to your -Appletalk network and all accepted jobs would be printed to the linux -printer `lp' (as defined in the /etc/printcap file) using lpd. The -entry `op=cg' says that the linux user `cg' is the operator of the -printer. - - -8.2.4. Starting the appletalk software. - - -Ok, you should now be ready to test this basic configuration. There is -an rc.atalk file supplied with the netatalk package that should work -ok for you, so all you should have to do is: - - - - - root# /usr/local/atalk/etc/rc.atalk - - - - -and all should startup and run ok. You should see no error messages -and the software will send messages to the console indicating each -stage as it starts. - - -8.2.5. Testing the appletalk software. - - -To test that the software is functioning properly, go to one of your -Apple machines, pull down the Apple menu, select the Chooser, click on -AppleShare, and your Linux box should appear. - - -8.2.6. Caveats of the appletalk software. - -· You may need to start the Appletalk support before you configure - your IP network. If you have problems starting the Appletalk - programs, or if after you start them you have trouble with your IP - network, then try starting the Appletalk software before you run - your /etc/rc.d/rc.inet1 file. - -· The afpd (Apple Filing Protocol Daemon) severely messes up your - hard disk. Below the mount points it creates a couple of - directories called ``.AppleDesktop'' and Network Trash Folder. - Then, for each directory you access it will create a .AppleDouble - below it so it can store resource forks, etc. So think twice before - exporting /, you will have a great time cleaning up afterwards. - -· The afpd program expects clear text passwords from the Macs. - Security could be a problem, so be very careful when you run this - daemon on a machine connected to the Internet, you have yourself to - blame if somebody nasty does something bad. - -· The existing diagnostic tools such as netstat and ifconfig don't - support Appletalk. The raw information is available in the - /proc/net/ directory if you need it. - -8.2.7. More information - - -For a much more detailed description of how to configure Appletalk for -Linux refer to Anders Brownworth Linux Netatalk-HOWTO page at -thehamptons.com. - - - -Netatalk faq and HOWTO: - - - -· http://thehamptons.com/anders/netatalk/ -· http://www.umich.edu/~rsug/netatalk/ -· http://www.umich.edu/~rsug/netatalk/faq.html - - - diff --git a/LDP/guide/docbook/Linux-Networking/Ethernet.xml b/LDP/guide/docbook/Linux-Networking/Ethernet.xml index 2224d6a7..84b6f161 100644 --- a/LDP/guide/docbook/Linux-Networking/Ethernet.xml +++ b/LDP/guide/docbook/Linux-Networking/Ethernet.xml @@ -42,5861 +42,7 @@ though it requires that hubs/switches on the LAN to be GigE capable. If not it w 100BaseT, and if this is not available to 10BaseT Ethernet. > End Binh +* Ethernet-Howto - - - - This is the Ethernet-Howto, which is a compilation of information - about which ethernet devices can be used for Linux, and how to set - them up. Note that this Howto is focused on the hardware and low - level driver aspect of the ethernet cards, and does not cover the - software end of things like ifconfig and route. That information is - found in various other Linux documentation. - ______________________________________________________________________ - - 1. Introduction - - The Ethernet-Howto contains detailed information on the current level - of support for most of the common ethernet cards available. It covers - common hardware configuration problems, and problems associated with - choosing the right driver, and then getting that driver loaded and - functional. It does not cover the next stages of setup (choosing an - internet address, routing, etc). That information can be found in - various other Linux documentation. - - In the early days of linux, the old ISA type ethernet cards were the - norm. The ISA bus had no sane or safe way for linux to determine what - cards were installed, or what settings each card was to use. This - meant that the end user was more involved in supplying this - information to linux, and they turned to this guide for help on doing - this. - - Fortunately, the newer PCI bus can be found in nearly every computer - that is out there today, and the ISA bus is left to collect dust with - the 386 and 486 computers of yesteryear. The designers of the PCI bus - recognized the problem with card detection on the old ISA bus, and so - added support for each card to be able to communicate to the host - computer their manufacturer and model, and what settings are to be - used. - - This slow demise of the ISA bus has reduced the involvement of the end - user drastically. As such, most of today's linux users would not need - to turn to this guide for help. However there are always some corner - cases where things don't work as expected, or some problems that need - troubleshooting. And of course there are still some old ISA computers - out there doing thankless dedicated tasks in the bottom of dark - closets too. - - This present revision covers ethernet drivers found in kernels up to - and including version 2.4.21. Some features pertaining to the - upcoming 2.6 release are also mentioned. - - The Ethernet-Howto is by: - - Paul Gortmaker, p_gortmaker @ yahoo.com - - - The primary source of information for the initial ASCII-only version - of the Ethernet-Howto was: - - Donald J. Becker, becker @ scyld.com - - - who we should thank for writing a lot of the ethernet card drivers - that are presently available for Linux. - - 1.2. Using the Ethernet-Howto - - As this guide is getting bigger and bigger, you probably don't want to - spend the rest of your afternoon reading the whole thing. And the good - news is that you don't have to read it all. The HTML and - Postscript/dvi versions have a table of contents which will really - help you find what you need a lot faster. - - Chances are you are reading this document beacuse you can't get things - to work and you don't know what to do or check. The next section - (``HELP - It doesn't work!'') is aimed at newcomers to linux and will - point you in the right direction. - - Typically the same problems and questions are asked over and over - again by different people. Chances are your specific problem or - question is one of these Frequently Asked Questions, and is answered - in the FAQ portion of this document . (``The FAQ section''). - Everybody should have a look through this section before posting for - help. - - If you haven't got an ethernet card, then you will want to start with - deciding on a card. (``What card should I buy...'') - - If you have already got an ethernet card, but are not sure if you can - use it with Linux, then you will want to read the section which - contains specific information on each manufacturer, and their cards. - (``Vendor Specific...'') - - If you are interested in some of the technical aspects of the Linux - device drivers, then you can have a browse of the section with this - type of information. (``Technical Information'') - - - 1.3. What do I need to to get ethernet working? - - - As a quick overview, you need to: 1) have a plug in ethernet card or - motherboard that has ethernet support built in, 2) determine the brand - or make and model of the ethernet card or on-board ethernet chip, 3) - determine if a linux driver for this model of card/chip does exist, 4) - locate and load this driver, 5) check driver output to verify it found - your card, 6) set or configure network parameters for the newly - detected network interface. - - - 1.4. HELP - It doesn't work! - - - Okay, don't panic. This will lead you through the process of getting - things working, even if you have no prior background in linux or - ethernet hardware. - - First thing you need to do is figure out what model your card is so - you can determine if Linux has a driver for that particular card. - Different cards typically have different ways of being controlled by - the host computer, and the linux driver (if there is one) contains - this control information in a format that allows linux to use the - card. - - If you don't have any manuals or anything of the sort that tell you - anything about the card model, then you can try using the lspci - utility for obtaining information on the PCI devices in your computer. - Doing a cat /proc/pci gives similar (but less) information. For ISA - cards, see the section on helping with mystery cards (reference - section: ``Identifying an Unknown Card''). - - Now that you know what type of card you have, read through the details - of your particular card in the card specific section (reference - section: ``Vendor Specific...'') which lists in alphabetical order, - card manufacturers, individual model numbers and whether it has a - linux driver or not. If it lists it as `Not Supported' you can pretty - much give up here. If you can't find your card in that list, then - check to see if your card manual lists it as being `compatible' with - another known card type. For example there are hundreds, if not - thousands of different cards made to be compatible with the original - Novell NE2000 design. - - Assuming you have found out that a linux driver exists for your card, - you now have to find it and make use of it. Just because linux has a - driver for your card does not mean that it is built into every kernel. - (The kernel is the core operating system that is first loaded at boot, - and contains drivers for various pieces of hardware, among other - things.) Depending on who made the particular linux distribution you - are using, there may be only a few pre-built kernels, and a whole - bunch of drivers as smaller separate modules, or there may be a whole - lot of kernels, covering a vast combination of built-in driver - combinations. - - Most linux distributions now ship with a bunch of small modules that - are the various drivers. The required modules are typically loaded - late in the boot process, or on-demand as a driver is needed to access - a particualr device. You will need to attach this module to the - kernel after it has booted up. See the information that came with your - distribution on installing and using modules, along with the module - section in this document. (``Using the Ethernet Drivers as Modules'') - - If you didn't find either a pre-built kernel with your driver, or a - module form of the driver, chances are you have a typically uncommon - card, and you will have to build your own kernel with that driver - included. Once you have linux installed, building a custom kernel is - not difficult at all. You essentially answer yes or no to what you - want the kernel to contain, and then tell it to build it. There is a - Kernel-HowTo that will help you along. - - At this point you should have somehow managed to be booting a kernel - with your driver built in, or be loading it as a module. About half - of the problems people have are related to not having driver loaded - one way or another, so you may find things work now. - - If it still doesn't work, then you need to verify that the kernel is - indeed detecting the card. To do this, you need to type dmesg | more - when logged in after the system has booted and all modules have been - loaded. This will allow you to review the boot messages that the - kernel scrolled up the screen during the boot process. If the card - has been detected, you should see somewhere in that list a message - from your card's driver that starts with eth0, mentions the driver - name and the hardware parameters (interrupt setting, input/output port - address, etc) that the card is set for. (Note: At boot, linux lists - all the PCI cards installed in the system, regardless of what drivers - are available - do not mistake this for the driver detection which - comes later!) - - If you don't see a driver indentification message like this, then the - driver didn't detect your card, and that is why things aren't working. - See the FAQ (``The FAQ Section'') for what to do if your card is not - detected. If you have a NE2000 compatible, there is also some NE2000 - specific tips on getting a card detected in the FAQ section as well. - - If the card is detected, but the detection message reports some sort - of error, like a resource conflict, then the driver probably won't - have initialized properly and the card still wont be useable. Most - common error messages of this sort are also listed in the FAQ section, - along with a solution. - - If the detection message seems okay, then double check the card - resources reported by the driver against those that the card is - physically set for (either by little black jumpers on the card, or by - a software utility supplied by the card manufacturer.) These must - match exactly. For example, if you have the card jumpered or - configured to IRQ 15 and the driver reports IRQ 10 in the boot - messages, things will not work. The FAQ section discusses the most - common cases of drivers incorrectly detecting the configuration - information of various cards. - - At this point, you have managed to get you card detected with all the - correct parameters, and hopefully everything is working. If not, then - you either have a software configuration error, or a hardware - configuration error. A software configuration error is not setting up - the right network addresses for the ifconfig and route commands, and - details of how to do that are fully described in the Network HowTo and - the `Network Administrator's Guide' which both probably came on the - CD-ROM you installed from. - - A hardware configuration error is when some sort of resource conflict - or mis-configuration (that the driver didn't detect at boot) stops the - card from working properly. This typically can be observed in several - different ways. (1) You get an error message when ifconfig tries to - open the device for use, such as ``SIOCSFFLAGS: Try again''. (2) The - driver reports eth0 error messages (viewed by dmesg | more) or strange - inconsistencies for each time it tries to send or receive data. (3) - Typing cat /proc/net/dev shows non-zero numbers in one of the errs, - drop, fifo, frame or carrier columns for eth0. (4) Typing cat - /proc/interrupts shows a zero interrupt count for the card. Most of - the typical hardware configuration errors are also discussed in the - FAQ section. - - Well, if you have got to this point and things still aren't working, - read the FAQ section of this document, read the vendor specific - section detailing your particular card, and if it still doesn't work - then you may have to resort to posting to an appropriate newsgroup for - help. If you do post, please detail all relevant information in that - post, such as the card brand, the kernel version, the driver boot - messages, the output from cat /proc/net/dev, a clear description of - the problem, and of course what you have already tried to do in an - effort to get things to work. - - You would be surprised at how many people post useless things like - ``Can someone help me? My ethernet doesn't work.'' and nothing else. - Readers of the newsgroups tend to ignore such silly posts, whereas a - detailed and informational problem description may allow a `linux- - guru' to spot your problem right away. Of course the same holds true - when e-mailing a problem report - always provide as much information - as possible. - - - - 1.5. Type of cable that your card should support - - - The twisted pair cables, with the RJ-45 (giant phone jack) connectors - is technically called 10BaseT. You may also hear it called UTP - (Unsheilded Twisted Pair). - - - The thinnet, or thin ethernet cabling, (RG-58 coaxial cable) with the - BNC (metal push and turn-to-lock) connectors is technically called - 10Base2. - - The older thick ethernet (10mm coaxial cable) which is only found in - older installations is called 10Base5. The 15 pin D-shaped plug found - on some ethernet cards (the AUI connector) is used to connect to thick - ethernet and external transcievers. - - Most ethercards also come in a `Combo' version for only $10-$20 more. - These have both twisted pair and thinnet transceiver built-in, - allowing you to change your mind later. - - Most installations will use 10BaseT/100BaseT 10Base2 does not offer - any upgrade path to 100Base-whatever. 10Base2 is fine for hobbyists - setting up a home network when purchasing a hub is not desireable for - some reason or another. - - See ``Cables, Coax...'' for other concerns with different types of - ethernet cable. - - - 2. Frequently Asked Questions - - - Here are some of the more frequently asked questions about using Linux - with an Ethernet connection. Some of the more specific questions are - sorted on a `per manufacturer basis'. Chances are the question you - want an answer for has already been asked (and answered!) by someone - else, so even if you don't find your answer here, you probably can - find what you want from a news archive such as Dejanews - . - - - - 2.1. How do I tell Linux what driver to use? - - - With most Linux distributions, the drivers exist as loadable modules, - which are small binary files that are merged with the operating system - at run time. A module gives the operating system (kernel) the - information on how to control that particular ethernet card. The name - of each module is listed in the heading of the section for each card - in this document. Once you know the name of the module, you have to - add it to the file /etc/modules.conf so Linux will know what module to - load for your card. The syntax is typically as follows. - - - alias eth0 module_name - options module_name option1=value1 option2=value2 ... - - - - The options line is typically only needed for older ISA hardware. For - multiple card systems, additional lines with eth1, eth2 and so on are - usually required. - - The module files typically live in the directory /lib/modules/ which - is further subdivided by kernel version (use uname -r) and subsystem - (in this case net). These are put there by the distribution builder, - or by the individual user when they run make modules_install after - building their own kernel and modules (see the kernel howto for more - details on building your own stuff). - - If you build your own kernel, you have the option of having all the - drivers merged with the kernel right then and there, rather than - existing as separate files. When this is done, the drivers will - detect the hardware at boot up. Options to the drivers are supplied - by the kernel command line prior to boot (see BootPrompt Howto for - more details). The user chooses what drivers are used during the make - config step of building the kernel (again see the kernel howto). - - - - 2.2. What card should I buy for Linux? - - - The answer to this question depends heavily on exactly what you intend - on doing with your net connection, and how much traffic it will see. - - If you only expect a single user to be doing the occasional ftp - session or WWW connection, then even an old ISA card will probably - keep you happy (assuming 10Mbps, not 100). - - If you intend to set up a server, and you require the CPU overhead of - moving data over the network to be kept to a minimum, you probably - want to look at one of the PCI cards that uses a chip with bus- - mastering capapbility. In addition, some cards now can actually do - some of the processing overhead of data checksums right on the card, - giving the CPU even more of a break. For more details please see: - - Hardware Checksum/Zerocopy Page - - - If you fall somewhere in the middle of the above, then any one of the - low cost PCI cards with a stable driver will do the job for you. - - - 2.3. Alpha Drivers -- Getting and Using them - - - I heard that there is an updated or preliminary/alpha driver available - for my card. Where can I get it? - - The newest of the `new' drivers can be found on Donald's WWW site: - www.scyld.com - things change here quite frequently, so just look - around for it. Alternatively, it may be easier to use a WWW browser - on: - - Don's Linux Network Home Page - - to locate the driver that you are looking for. (Watch out for WWW - browsers that silently munge the source by replacing TABs with spaces - and so on - use ftp, or at least an FTP URL for downloading if - unsure.) - - Now, if it really is an alpha, or pre-alpha driver, then please treat - it as such. In other words, don't complain because you can't figure - out what to do with it. If you can't figure out how to install it, - then you probably shouldn't be testing it. Also, if it brings your - machine down, don't complain. Instead, send us a well documented bug - report, or even better, a patch! - - Note that some of the `useable' experimental/alpha drivers have been - included in the standard kernel source tree. When running make config - one of the first things you will be asked is whether to ``Prompt for - development and/or incomplete code/drivers''. You will have to answer - `Y' here to get asked about including any alpha/experiemntal drivers. - - - - 2.4. Using More than one Ethernet Card per Machine - - - What needs to be done so that Linux can run two or more ethernet - cards? - - The answer to this question depends on whether the driver(s) is/are - being used as a loadable module or are compiled directly into the - kernel. Most linux distributions use modular drivers now. This saves - distributing lots of kernels, each with a different driver set built - in. Instead a single basic kernel is used and the individual drivers - that are need for a particular user's system are loaded once the - system has booted far enough to access the driver module files - (usually stored in /lib/modules/). - - In the case of PCI cards, the PCI drivers/modules should detect all of - the installed cards that it supports automatically. The user should - not supply any I/O base or IRQ information, unless specifically - instructed to do so by the individual driver documentation in order to - support some non-standard machine. - - Some earlier kernels had a limit of 16 ethercards that could be - detected at boot, and some ISA modules have a limit of four cards per - loaded module. You can always load another copy of the same module - under a different name to support another four cards if this is a - limitation, or recompile the module with support for as many as you - require. - - - 2.4.1. With the Driver as a Module - - For ISA cards, probing for a card is not a safe operation, and hence - you typically need to supply the I/O base address of the card so the - module knows where to look. This information is stored in the file - /etc/modules.conf. - - As an example, consider a user that has two ISA NE2000 cards, one at - 0x300 and one at 0x240 and what lines they would have in their - /etc/modules.conf file: - - - alias eth0 ne - alias eth1 ne - options ne io=0x240,0x300 - - - - What this does: This says that if the administrator (or the kernel) - does a modprobe eth0 or a modprobe eth1 then the ne.o driver should be - loaded for either eth0 or eth1. Furthermore, when the ne.o module is - loaded, it should be loaded with the options io=0x240,0x300 so that - the driver knows where to look for the cards. Note that the 0x is - important - things like 300h as commonly used in the DOS world won't - work. Switching the order of the 0x240 and the 0x300 will switch - which physical card ends up as eth0 and eth1. - - Most of the ISA module drivers can take multiple comma separated I/O - values like this example to handle multiple cards. However, some - (older?) drivers, such as the 3c501.o module are currently only able - to handle one card per module load. In this case you can load the - module twice to get both cards detected. The /etc/modules.conf file in - this case would look like: - - - - alias eth0 3c501 - alias eth1 3c501 - options eth0 -o 3c501-0 io=0x280 irq=5 - options eth1 -o 3c501-1 io=0x300 irq=7 - - - - In this example the -o option has been used to give each instance of - the module a unique name, since you can't have two modules loaded with - the same name. The irq= option has also been used to to specify the - hardware IRQ setting of the card. (This method can also be used with - modules that accept comma separated I/O values, but it is less - efficient since the module ends up being loaded twice when it doesn't - really need to be.) - - As a final example, consider a user with one 3c503 card at 0x350 and - one SMC Elite16 (wd8013) card at 0x280. They would have: - - - alias eth0 wd - alias eth1 3c503 - options wd io=0x280 - options 3c503 io=0x350 - - - - For PCI cards, you typically only need the alias lines to correlate - the ethN interfaces with the appropriate driver name, since the I/O - base of a PCI card can be safely detected. - - The available modules are typically stored in /lib/modules/`uname - -r`/net where the uname -r command gives the kernel version (e.g. - 2.0.34). You can look in there to see which one matches your card. - Once you have the correct settings in your modules.conf file, you can - test things out with: - - - modprobe eth0 - modprobe eth1 - ... - modprobe ethN-1 - - - - where `N' is the number of ethernet interfaces you have. Note that - the interface name (ethX) assigned to the driver by the kernel is - independent of the name used on the alias line. For further details - on this, see: ``Using the Ethernet Drivers as Modules'' - - - - 2.4.2. With the Driver Compiled into the Kernel - - Since some ISA card probes can hang the machine, kernels up to and - including 2.4 only autoprobe for one ISA ethercard by default. As - there aren't any distribution kernels with lots of ISA drivers built - in anymore, this restriction is no longer in 2.6 and newer. - - As of 2.2 and newer kernels, the boot probes have been sorted into - safe and unsafe, so that all safe (e.g. PCI and EISA) probes will find - all related cards automatically. Systems with more than one ethernet - card with at least one of them being an ISA card will still need to do - one of the following.) - - There are two ways that you can enable auto-probing for the second - (and third, and...) card. The easiest method is to pass boot-time - arguments to the kernel, which is usually done by LILO. Probing for - the second card can be achieved by using a boot-time argument as - simple as ether=0,0,eth1. In this case eth0 and eth1 will be assigned - in the order that the cards are found at boot. Say if you want the - card at 0x300 to be eth0 and the card at 0x280 to be eth1 then you - could use - - - LILO: linux ether=5,0x300,eth0 ether=15,0x280,eth1 - - - The ether= command accepts more than the IRQ + I/O + name shown above. - Please have a look at ``Passing Ethernet Arguments...'' for the full - syntax, card specific parameters, and LILO tips. - - The second way (not recommended) is to edit the file Space.c and - replace the 0xffe0 entry for the I/O address with a zero. The 0xffe0 - entry tells it not to probe for that device -- replacing it with a - zero will enable autoprobing for that device. - - - 2.5. The ether= thing didn't do anything for me. Why? - - - As described above, the ether= command only works for drivers that are - compiled into the kernel. Now most distributions use the drivers in a - modular form, and so the ether= command is rarely used anymore. (Some - older documentation has yet to be updated to reflect this change.) If - you want to apply options for a modular ethernet driver you must make - changes to the /etc/modules.conf file. - - If you are using a compiled in driver, and have added an ether= to - your LILO configuration file, note that it won't take effect until you - re-run lilo to process the updated configuration file. - - - - 2.6. Problems with NE1000 / NE2000 cards (and clones) - - - Problem: PCI NE2000 clone card is not detected at boot with v2.0.x. - - Reason: The ne.c driver up to v2.0.30 only knows about the PCI ID - number of RealTek 8029 based clone cards. Since then, several others - have also released PCI NE2000 clone cards, with different PCI ID - numbers, and hence the driver doesn't detect them. - - Solution: The easiest solution is to upgrade to a v2.0.31 (or newer) - version of the linux kernel. It knows the ID numbers of about five - different NE2000-PCI chips, and will detect them automatically at boot - or at module loading time. If you upgrade to 2.0.34 (or newer) there - is a PCI-only specific NE2000 driver that is slightly smaller and more - efficient than the original ISA/PCI driver. - - Problem: PCI NE2000 clone card is reported as an ne1000 (8 bit card!) - at boot or when I load the ne.o module for v2.0.x, and hence doesn't - work. - - Reason: Some PCI clones don't implement byte wide access (and hence - are not truly 100% NE2000 compatible). This causes the probe to think - they are NE1000 cards. - - Solution: You need to upgrade to v2.0.31 (or newer) as described - above. The driver(s) now check for this hardware bug. - - - Problem: PCI NE2000 card gets terrible performance, even when reducing - the window size as described in the Performance Tips section. - - Reason: The spec sheets for the original 8390 chip, desgined and sold - over ten years ago, noted that a dummy read from the chip was required - before each write operation for maximum reliablity. The driver has - the facility to do this but it has been disabled by default since the - v1.2 kernel days. One user has reported that re-enabling this `mis- - feature' helped their performance with a cheap PCI NE2000 clone card. - - Solution: Since it has only been reported as a solution by one person, - don't get your hopes up. Re-enabling the read before write fix is done - by simply editing the driver file in linux/drivers/net/, uncommenting - the line containing NE_RW_BUGFIX and then rebuilding the kernel or - module as appropriate. Please send an e-mail describing the - performance difference and type of card/chip you have if this helps - you. (The same can be done for the ne2k-pci.c driver as well). - - Problem: The ne2k-pci.c driver reports error messages like timeout - waiting for Tx RDC with a PCI NE2000 card and doesn't work right. - - Reason: Your card and/or the card to PCI bus link can't handle the - long word I/O optimization used in this driver. - - Solution: Firstly, check the settings available in the BIOS/CMOS setup - to see if any related to PCI bus timing are too aggressive for - reliable operation. Otherwise using the ISA/PCI ne.c driver (or - removing the #define USE_LONGIO from ne2k-pci.c) should let you use - the card. - - Probem: ISA Plug and Play NE2000 (such as RealTek 8019) is not - detected. - - Reason: The original NE2000 specification (and hence the linux NE2000 - driver in older kernels) did not have support for Plug and Play. - - Solution: Either use a 2.4 or newer kernel that has a NE2000 driver - with PnP, or use the DOS configuration disk that came with the card to - disable PnP, and to set the card to a specified I/O address and IRQ. - Add a line to /etc/modules.conf like options ne io=0xNNN where 0xNNN - is the hex I/O address you set the card to. (This assumes you are - using a modular driver; if not then use an ether=0,0xNNN,eth0 argument - at boot). You may also have to enter the BIOS/CMOS setup and mark the - IRQ as Legacy-ISA instead of PnP. - - Problem: NE*000 driver reports `not found (no reset ack)' during boot - probe. - - Reason: This is related to the above change. After the initial - verification that an 8390 is at the probed I/O address, the reset is - performed. When the card has completed the reset, it is supposed to - acknowedge that the reset has completed. Your card doesn't, and so - the driver assumes that no NE card is present. - - Solution: You can tell the driver that you have a bad card by using an - otherwise unused mem_end hexidecimal value of 0xbad at boot time. You - have to also supply a non-zero I/O base for the card when using the - 0xbad override. For example, a card that is at 0x340 that doesn't ack - the reset would use something like: - - - LILO: linux ether=0,0x340,0,0xbad,eth0 - - - - This will allow the card detection to continue, even if your card - doesn't ACK the reset. If you are using the driver as a module, then - you can supply the option bad=0xbad just like you supply the I/O - address. - - Problem: NE*000 card hangs machine at first network access. - - Reason: This problem has been reported for kernels as old as 1.1.57 to - the present. It appears confined to a few software configurable clone - cards. It appears that they expect to be initialized in some special - way. - - Solution: Several people have reported that running the supplied DOS - software config program and/or the supplied DOS driver prior to warm - booting (i.e. loadlin or the `three-finger-salute') into linux allowed - the card to work. This would indicate that these cards need to be - initialized in a particular fashion, slightly different than what the - present Linux driver does. - - Problem: NE*000 ethercard at 0x360 doesn't get detected. - - Reason: Your NE2000 card is 0x20 wide in I/O space, which makes it hit - the parallel port at 0x378. Other devices that could be there are the - second floppy controller (if equipped) at 0x370 and the secondary IDE - controller at 0x376--0x377. If the port(s) are already registered by - another driver, the kernel will not let the probe happen. - - Solution: Either move your card to an address like 0x280, 0x340, 0x320 - or compile without parallel printer support. - - Problem: Network `goes away' every time I print something (NE2000) - - Reason: Same problem as above, but you have an older kernel that - doesn't check for overlapping I/O regions. Use the same fix as above, - and get a new kernel while you are at it. - - Problem: NE*000 ethercard probe at 0xNNN: 00 00 C5 ... not found. - (invalid signature yy zz) - - Reason: First off, do you have a NE1000 or NE2000 card at the addr. - 0xNNN? And if so, does the hardware address reported look like a - valid one? If so, then you have a poor NE*000 clone. All NE*000 clones - are supposed to have the value 0x57 in bytes 14 and 15 of the SA PROM - on the card. Yours doesn't -- it has `yy zz' instead. - - Solution: There are two ways to get around this. The easiest is to use - an 0xbad mem_end value as described above for the `no reset ack' - problem. This will bypass the signature check, as long as a non-zero - I/O base is also given. This way no recompilation of the kernel is - required. - - The second method (for hackers) involves changing the driver itself, - and then recompiling your kernel (or module). The driver - (/usr/src/linux/drivers/net/ne.c) has a "Hall of Shame" list at about - line 42. This list is used to detect poor clones. For example, the - DFI cards use `DFI' in the first 3 bytes of the PROM, instead of using - 0x57 in bytes 14 and 15, like they are supposed to. - - Problem: The machine hangs during boot right after the `8390...' or - `WD....' message. Removing the NE2000 fixes the problem. - - Solution: Change your NE2000 base address to something like 0x340. - Alternatively, you can use the ``reserve='' boot argument in - conjunction with the ``ether='' argument to protect the card from - other device driver probes. - - Reason: Your NE2000 clone isn't a good enough clone. An active NE2000 - is a bottomless pit that will trap any driver autoprobing in its - space. Changing the NE2000 to a less-popular address will move it out - of the way of other autoprobes, allowing your machine to boot. - - - Problem: The machine hangs during the SCSI probe at boot. - - Reason: It's the same problem as above, change the ethercard's - address, or use the reserve/ether boot arguments. - - Problem: The machine hangs during the soundcard probe at boot. - - Reason: No, that's really during the silent SCSI probe, and it's the - same problem as above. - - Problem: NE2000 not detected at boot - no boot messages at all - - Solution: There is no `magic solution' as there can be a number of - reasons why it wasn't detected. The following list should help you - walk through the possible problems. - - 1) Build a new kernel with only the device drivers that you need. - Verify that you are indeed booting the fresh kernel. Forgetting to run - lilo, etc. can result in booting the old one. (Look closely at the - build time/date reported at boot.) Sounds obvious, but we have all - done it before. Make sure the driver is in fact included in the new - kernel, by checking the System.map file for names like ne_probe. - - 2) Look at the boot messages carefully. Does it ever even mention - doing a ne2k probe such as `NE*000 probe at 0xNNN: not found (blah - blah)' or does it just fail silently. There is a big difference. Use - dmesg|more to review the boot messages after logging in, or hit Shift- - PgUp to scroll the screen up after the boot has completed and the - login prompt appears. - - 3) After booting, do a cat /proc/ioports and verify that the full - iospace that the card will require is vacant. If you are at 0x300 then - the ne2k driver will ask for 0x300-0x31f. If any other device driver - has registered even one port anywhere in that range, the probe will - not take place at that address and will silently continue to the next - of the probed addresses. A common case is having the lp driver reserve - 0x378 or the second IDE channel reserve 0x376 which stops the ne - driver from probing 0x360-0x380. - - 4) Same as above for cat /proc/interrupts. Make sure no other device - has registered the interrupt that you set the ethercard for. In this - case, the probe will happen, and the ether driver will complain loudly - at boot about not being able to get the desired IRQ line. - - 5) If you are still stumped by the silent failure of the driver, then - edit it and add some printk() to the probe. For example, with the ne2k - you could add/remove lines (marked with a `+' or `-') in - linux/drivers/net/ne.c like: - - - - ______________________________________________________________________ - int reg0 = inb_p(ioaddr); - - + printk("NE2k probe - now checking %x\n",ioaddr); - - if (reg0 == 0xFF) - + if (reg0 == 0xFF) { - + printk("NE2k probe - got 0xFF (vacant I/O port)\n"); - return ENODEV; - + } - ______________________________________________________________________ - - - - Then it will output messages for each port address that it checks, and - you will see if your card's address is being probed or not. - - 6) You can also get the ne2k diagnostic from Don's ftp site (mentioned - in the howto as well) and see if it is able to detect your card after - you have booted into linux. Use the `-p 0xNNN' option to tell it where - to look for the card. (The default is 0x300 and it doesn't go looking - elsewhere, unlike the boot-time probe.) The output from when it finds - a card will look something like: - - - ______________________________________________________________________ - Checking the ethercard at 0x300. - Register 0x0d (0x30d) is 00 - Passed initial NE2000 probe, value 00. - 8390 registers: 0a 00 00 00 63 00 00 00 01 00 30 01 00 00 00 00 - SA PROM 0: 00 00 00 00 c0 c0 b0 b0 05 05 65 65 05 05 20 20 - SA PROM 0x10: 00 00 07 07 0d 0d 01 01 14 14 02 02 57 57 57 57 - - NE2000 found at 0x300, using start page 0x40 and end page 0x80. - ______________________________________________________________________ - - - - Your register values and PROM values will probably be different. Note - that all the PROM values are doubled for a 16 bit card, and that the - ethernet address (00:00:c0:b0:05:65) appears in the first row, and the - double 0x57 signature appears at the end of the PROM. - - The output from when there is no card installed at 0x300 will look - something like this: - - - ______________________________________________________________________ - Checking the ethercard at 0x300. - Register 0x0d (0x30d) is ff - Failed initial NE2000 probe, value ff. - 8390 registers: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff - SA PROM 0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff - SA PROM 0x10: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff - - Invalid signature found, wordlength 2. - ______________________________________________________________________ - - - - The 0xff values arise because that is the value that is returned when - one reads a vacant I/O port. If you happen to have some other hardware - in the region that is probed, you may see some non 0xff values as - well. - - 7) Try warm booting into linux from a DOS boot floppy (via loadlin) - after running the supplied DOS driver or config program. It may be - doing some extra (i.e. non-standard) "magic" to initialize the card. - - 8) Try Russ Nelson's ne2000.com packet driver to see if even it can - see your card -- if not, then things do not look good. Example: - - - A:> ne2000 0x60 10 0x300 - - - The arguments are software interrupt vector, hardware IRQ, and I/O - base. You can get it from any msdos archive in pktdrv11.zip -- The - current version may be newer than 11. - - - - 2.7. Problems with SMC Ultra/EtherEZ and WD80*3 cards - - - Problem: You get messages such as the following: - - - eth0: bogus packet size: 65531, status=0xff, nxpg=0xff - - - - Reason: There is a shared memory problem. - - Solution: The most common reason for this is PCI machines that are not - configured to map in ISA memory devices. Hence you end up reading the - PC's RAM (all 0xff values) instead of the RAM on the card that - contains the data from the received packet. - - Other typical problems that are easy to fix are board conflicts, - having cache or `shadow ROM' enabled for that region, or running your - ISA bus faster than 8Mhz. There are also a surprising number of memory - failures on ethernet cards, so run a diagnostic program if you have - one for your ethercard. - - Problem: SMC EtherEZ doesn't work in non-shared memory (PIO) mode. - - Reason: Older versions of the Ultra driver only supported the card in - the shared memory mode of operation. - - Solution: The driver in kernel version 2.0 and above also supports the - programmed I/O mode of operation. Upgrade to v2.0 or newer. - - Problem: Old wd8003 and/or jumper-settable wd8013 always get the IRQ - wrong. - - Reason: The old wd8003 cards and jumper-settable wd8013 clones don't - have the EEPROM that the driver can read the IRQ setting from. If the - driver can't read the IRQ, then it tries to auto-IRQ to find out what - it is. And if auto-IRQ returns zero, then the driver just assigns IRQ - 5 for an 8 bit card or IRQ 10 for a 16 bit card. - - Solution: Avoid the auto-IRQ code, and tell the kernel what the IRQ - that you have jumpered the card to in your module configuration file - (or via a boot time argument for in-kernel drivers). - - Problem: SMC Ultra card is detected as wd8013, but the IRQ and shared - memory base is wrong. - - Reason: The Ultra card looks a lot like a wd8013, and if the Ultra - driver is not present in the kernel, the wd driver may mistake the - ultra as a wd8013. The ultra probe comes before the wd probe, so this - usually shouldn't happen. The ultra stores the IRQ and mem base in the - EEPROM differently than a wd8013, hence the bogus values reported. - - Solution: Recompile with only the drivers you need in the kernel. If - you have a mix of wd and ultra cards in one machine, and are using - modules, then load the ultra module first. - - - 2.8. Problems with 3Com cards - - Problem: The 3c503 picks IRQ N, but this is needed for some other - device which needs IRQ N. (eg. CD ROM driver, modem, etc.) Can this - be fixed without compiling this into the kernel? - - Solution: The 3c503 driver probes for a free IRQ line in the order {5, - 9/2, 3, 4}, and it should pick a line which isn't being used. The - driver chooses when the card is ifconfig'ed into operation. - - If you are using a modular driver, you can use module parameters to - set various things, including the IRQ value. - - The following selects IRQ9, base location 0x300, , and - if_port #1 (the external transceiver). - - - - io=0x300 irq=9 xcvr=1 - - - Alternately, if the driver is compiled into the kernel, you can set - the same values at boot by passing parameters via LILO. - - - LILO: linux ether=9,0x300,0,1,eth0 - - - The following selects IRQ3, probes for the base location, , and the default if_port #0 (the internal transceiver) - - - LILO: linux ether=3,0,0,0,eth0 - - - Problem: 3c503: configured interrupt X invalid, will use autoIRQ. - - Reason: The 3c503 card can only use one of IRQ{5, 2/9, 3, 4} (These - are the only lines that are connected to the card.) If you pass in an - IRQ value that is not in the above set, you will get the above - message. Usually, specifying an interrupt value for the 3c503 is not - necessary. The 3c503 will autoIRQ when it gets ifconfig'ed, and pick - one of IRQ{5, 2/9, 3, 4}. - - Solution: Use one of the valid IRQs listed above, or enable autoIRQ by - not specifying the IRQ line at all. - - Problem: The supplied 3c503 drivers don't use the AUI (thicknet) port. - How does one choose it over the default thinnet port? - - Solution: The 3c503 AUI port can be selected at boot-time for in- - kernel drivers, and at module insertion for modular drivers. The - selection is overloaded onto the low bit of the currently-unused - dev->rmem_start variable, so a boot-time parameter of: - - - LILO: linux ether=0,0,0,1,eth0 - - should work for in-kernel drivers. - - To specify the AUI port when loading as a module, just append xcvr=1 - to the module options line along with your I/O and IRQ values. - - - - 2.9. FAQs Not Specific to Any Card. - - - - 2.9.1. Linux and ISA Plug and Play Ethernet Cards - - - For best results (and minimum aggravation) it is recommended that you - use the (usually DOS) program that came with your card to disable the - ISA-PnP mechanism and set it to a fixed I/O address and IRQ. Make - sure the I/O address you use is probed by the driver at boot, or if - using modules then supply the address as an io= option in - /etc/modules.conf. You may also have to enter the BIOS/CMOS setup and - mark the IRQ as Legacy-ISA instead of ISA-PnP (if your computer has - this option). - - Note that you typically don't need DOS installed to run a DOS based - configuration program. You can usually just boot a DOS floppy disk and - run them from the supplied floppy disk. You can also download OpenDOS - and FreeDOS for free. - - If you require ISA-PnP enabled for compatibility with some other - operating system then what you will have to do depends on what kernel - version you are using. For 2.2.x and older kernels, you will have to - use the isapnptools package with linux to configure the card(s) each - time at boot. You will still have to make sure the I/O address chosen - for the card is probed by the driver or supplied as an io= option. - For 2.4.x and newer kernels, there is ISA-PnP support available built - right into the kernel (if selected at build time) and if your - particular driver makes use of this support, then your card will be - configured to an available I/O address and IRQ all without any user - supplied option values. You do not want to be trying to use the user- - space isapnptools and the in kernel ISA-PnP support at the same time. - - Some systems have an `enable PnP OS' (or similar named) option in the - BIOS/CMOS setup menu which does not really have anything to do with - ISA-PnP hardware. See below for more details on this option. - - - 2.9.2. PCI machine detects card but driver fails probe (PnP OS). - - - Some PCI BIOSes may not enable all PCI cards at power-up, especially - if the BIOS option `PnP OS' is enabled. This mis-feature is to support - the current release of Windows which still uses some real-mode - drivers. Either disable this option, or try and upgrade to a newer - driver which has the code to enable a disabled card. - - Note that kernel version 2.4.x has better support to deal with this - option - in particular you should be able to enable this option, and - the kernel/drivers should be able to set up and/or enable the cards on - its own. - - - 2.9.3. All cards detected but two fail to work in PCI machine - - - Version 1 of the PCI spec allowed for some slots to be bus master and - some slots to be slave (non-bus master) slots. To avoid the problems - associated with people putting BM cards into slave slots, the v2 of - the PCI spec said that all slots should be BM capable. Hovever most - PCI chipsets only have four BM pins, and so if you have a five slot - board, chances are that two slots share one of the BM pins! This - allows the board to meet the requirements of the v2 spec (but not the - intent). So if you have a bunch of cards, and two of them fail to - work, they may be in slots that share a BM pin. - - - 2.9.4. I have /etc/conf.modules and not /etc/modules.conf . - - - Older distributions will have conf.modules and not modules.conf which - is the more sensible name of the two. Newer module utility programs - expect the new name, so keep that in mind if you upgrade an older - system. - - - 2.9.5. Ethercard is Not Detected at Boot. - - - The usual reason for this is that people are using a kernel that does - not have support for their particular card built in. For a modular - kernel, it usually means that the required module has not been - requested for loading. - - If you are using a modular based kernel, such as those installed by - most of the linux distributions, then try and use the configuration - utility for the distribution to select the module for your card. For - ISA cards, it is a good idea to determine the I/O address of the card - and add it as an option (e.g. io=0x340) if the configuration utility - asks for any options. If there is no configuration utility, then you - will have to add the correct module name (and options) to - /etc/modules.conf -- see man modprobe for more details. - - The next main cause is having another device using part of the I/O - space that your card needs. Most cards are 16 or 32 bytes wide in I/O - space. If your card is set at 0x300 and 32 bytes wide, then the driver - will ask for 0x300-0x31f. If any other device driver has registered - even one port anywhere in that range, the probe will not take place at - that address and the driver will silently continue to the next of the - probed addresses. So, after booting, do a cat /proc/ioports and verify - that the full I/O space that the card will require is vacant. - - Another problem is having your card jumpered to an I/O address that - isn't probed by default. The list of probed addresses for each driver - is easily found just after the text comments in the driver source. - Even if the I/O setting of your card is not in the list of probed - addresses, you can supply it at boot (for in-kernel drivers) with the - ether= command as described in ``Passing Ethernet Arguments...'' - Modular drivers can make use of the io= option in /etc/modules.conf to - specify an address that isn't probed by default. - - - - 2.9.6. Driver reports unresolved symbol ei_open and won't load. - - - You are using one of the many ethernet cards that have an 8390 chip - (or clone) on board. For such cards, the driver comes in two parts - - the part which you unsuccessfully tried to load (e.g. ne2k-pci.o, - ne.o, wd.o, smc-ultra.o etc.) and the 8390 part. These drivers have - (+8390) listed right beside their module name in the vendor specific - information listing. (``Vendor Specific...'') - - - You have to make sure that the 8390.o module gets loaded before - loading the second half of the driver so that the second half of the - driver can find the functions in 8390.o that it needs. - - Possible causes: (1)Forgetting to run depmod after installing a new - kernel and modules, so that module dependencies like this are handled - automatically. (2)Using insmod instead of modprobe, as insmod doesn't - check for any module ordering constraints. (3)The module 8390.o is not - in the directory beside the other half of the driver where it should - be. - - - 2.9.7. ifconfig reports the wrong I/O address for the card. - - - No it doesn't. You are just interpreting it incorrectly. This is not - a bug, and the numbers reported are correct. It just happens that some - 8390 based cards (wd80x3, smc-ultra, etc) have the actual 8390 chip - living at an offset from the first assigned I/O port. This is the - value stored in dev->base_addr, and is what ifconfig reports. If you - want to see the full range of ports that your card uses, then try cat - /proc/ioports which will give the numbers you expect. - - - 2.9.8. Shared Memory ISA cards in PCI Machine do not work ( 0xffff ) - - - This will usually show up as reads of lots of 0xffff values. No - shared memory cards of any type will work in a PCI machine unless you - have the PCI ROM BIOS/CMOS SETUP configuration set properly. You have - to set it to allow shared memory access from the ISA bus for the - memory region that your card is trying to use. If you can't figure out - which settings are applicable then ask your supplier or local computer - guru. For AMI BIOS, there is usually a "Plug and Play" section where - there will be an ``ISA Shared Memory Size'' and ``ISA Shared Memory - Base'' settings. For cards like the wd8013 and SMC Ultra, change the - size from the default of `Disabled' to 16kB, and change the base to - the shared memory address of your card. - - - - 2.9.9. Card seems to send data but never receives anything. - - - Do a cat /proc/interrupts. A running total of the number of interrupt - events your card generates will be in the list given from the above. - If it is zero and/or doesn't increase when you try to use the card - then there is probably a physical interrupt conflict with another - device installed in the computer (regardless of whether or not the - other device has a driver installed/available). Change the IRQ of one - of the two devices to a free IRQ. - - - - 2.9.10. Asynchronous Transfer Mode (ATM) Support - - - Werner Almesberger has been working on ATM support for linux. He has - been working with the Efficient Networks ENI155p board (Efficient - Networks ) and the Zeitnet ZN1221 board - (Zeitnet ). - - Werner says that the driver for the ENI155p is rather stable, while - the driver for the ZN1221 is presently unfinished. - - - Check the latest/updated status at the following URL: - - Linux ATM Support - - - 2.9.11. Gigabit Ethernet Support - - - Is there any gigabit ethernet support for Linux? - - Yes, there are currently several. One of the prominent Linux network - developers rated the performance of the cards with linux drivers as - follows: 1) Intel E1000, 2) Tigon2/Acenic, 3) SysKonnect sk-98xx, 4) - Tigon3/bcm57xx. This was as of March 2002 and subject to change of - course. - - - 2.9.12. FDDI Support - - Is there FDDI support for Linux? - - Yes. Larry Stefani has written a driver for v2.0 with Digital's DEFEA - (FDDI EISA) and DEFPA (FDDI PCI) cards. This was included into the - v2.0.24 kernel. Currently no other cards are supported though. - - - 2.9.13. Full Duplex Support - - - Will Full Duplex give me 20MBps? Does Linux support it? - - Cameron Spitzer writes the following about full duplex 10Base-T cards: - ``If you connect it to a full duplex switched hub, and your system is - fast enough and not doing much else, it can keep the link busy in both - directions. There is no such thing as full duplex 10BASE-2 or - 10BASE-5 (thin and thick coax). Full Duplex works by disabling - collision detection in the adapter. That's why you can't do it with - coax; the LAN won't run that way. 10BASE-T (RJ45 interface) uses - separate wires for send and receive, so it's possible to run both ways - at the same time. The switching hub takes care of the collision - problem. The signalling rate is 10 Mbps.'' - - So as you can see, you still will only be able to receive or transmit - at 10Mbps, and hence don't expect a 2x performance increase. As to - whether it is supported or not, that depends on the card and possibly - the driver. Some cards may do auto-negotiation, some may need driver - support, and some may need the user to select an option in a card's - EEPROM configuration. Only the serious/heavy user would notice the - difference between the two modes anyway. - - - 2.9.14. Ethernet Cards for Linux on SMP Machines - - - If you spent the extra money on a multi processor (MP) computer then - buy a good ethernet card as well. For v2.0 kernels it wasn't really an - issue, but it definitely is for v2.2. Most of the older non- - intelligent (e.g. ISA bus PIO and shared memory design) cards were - never designed with any consideration for use on a MP machine. The - executive summary is to buy an intelligent modern design card and make - sure the driver has been written (or updated) to handle MP operation. - (The key words here are `modern design' - the PCI-NE2000's are just a - 10+ year old design on a modern bus.) Looking for the text spin_lock - in the driver source is a good indication that the driver has been - written to deal with MP operation. The full details of why you should - buy a good card for MP use (and what happens if you dont) follow. - In v2.0 kernels, only one processor was allowed `in kernel' (i.e. - changing kernel data and/or running device drivers) at any given time. - So from the point of view of the card (and the associated driver) - nothing was different from uni processor (UP) operation and things - just continued to work. (This was the easiest way to get a working MP - version of Linux - one big lock around the whole kernel only allows - one processor in at a time. This way you know that you won't have two - processors trying to change the same thing at the same time!) - - The downside to only allowing one processor in the kernel at a time - was that you only got MP performance if the running programs were self - contained and calculation intensive. If the programs did a lot of - input/output (I/O) such as reading or writing data to disk or over a - network, then all but one of the processors would be stalled waiting - on their I/O requests to be completed while the one processor running - in kernel frantically tries to run all the device drivers to fill the - I/O requests. The kernel becomes the bottleneck and since there is - only one processor running in the kernel, the performance of a MP - machine in the heavy I/O, single-lock case quickly degrades close to - that of a single processor machine. - - Since this is clearly less than ideal (esp. for file/WWW servers, - routers, etc.) the v2.2 kernels have finer grained locking - meaning - that more than one processor can be in the kernel at a time. Instead - of one big lock around the whole kernel, there are a lot of smaller - locks protecting critical data from being manipulated by more than one - processor at a time - e.g. one processor can be running the driver for - the network card, while another processor is running the driver for - the disk drive at the same time. - - Okay, with that all in mind here are the snags: The finer locking - means that you can have one processor trying to send data out through - an ethernet driver while another processor tries to access the same - driver/card to do something else (such as get the card statistics for - cat /proc/net/dev). Oops - your card stats just got sent out over the - wire, while you got data for your stats instead. Yes, the card got - confused by being asked to do two (or more!) things at once, and - chances are it crashed your machine in the process. - - So, the driver that worked for UP is no longer good enough - it needs - to be updated with locks that control access to the underlying card - so that the three tasks of receive, transmit and manipulation of - configuration data are serialized to the degree required by the card - for stable operation. The scary part here is that a driver not yet - updated with locks for stable MP operation will probably appear to be - working in a MP machine under light network load, but will crash the - machine or at least exhibit strange behaviour when two (or more!) - processors try to do more than one of these three tasks at the same - time. - - The updated MP aware ethernet driver will (at a minimum) require a - lock around the driver that limits access at the entry points from the - kernel into the driver to `one at a time please'. With this in place, - things will be serialized so that the underlying hardware should be - treated just as if it was being used in a UP machine, and so it should - be stable. The downside is that the one lock around the whole ethernet - driver has the same negative performance implications that having one - big lock around the whole kernel had (but on a smaller scale) - i.e. - you can only have one processor dealing with the card at a time. - [Technical Note: The performance impact may also include increased - interrupt latencies if the locks that need to be added are of the - irqsave type and they are held for a long time.] - - Possible improvements on this situation can be made in two ways. You - can try to minimize the time between when the lock is taken and when - it is released, and/or you can implement finer grained locking within - the driver (e.g. a lock around the whole driver would be overkill if a - lock or two protecting against simultaneous access to a couple of - sensitive registers/settings on the card would suffice). - - However, for older non-intelligent cards that were never designed with - MP use in mind, neither of these improvements may be feasible. Worse - yet is that the non-intelligent cards typically require the processor - to move the data between the card and the computer memory, so in a - worst case scenario the lock will be held the whole time that it takes - to move each 1.5kB data packet over an ISA bus. - - The more modern intelligent cards typically move network data directly - to and from the computer memory without any help from a processor. - This is a big win, since the lock is then only held for the short time - it takes the processor to tell the card where in memory to get/store - the next network data packet. More modern card designs are less apt to - require a single big lock around the whole driver as well. - - - - 2.9.15. Ethernet Cards for Linux on Alpha/AXP PCI Boards - - - As of v2.0, only the 3c509, depca, de4x5, pcnet32, and all the 8390 - drivers (wd, smc-ultra, ne, 3c503, etc.) have been made `architecture - independent' so as to work on the DEC Alpha CPU based systems. Other - updated PCI drivers from Donald's WWW page may also work as these have - been written with architecture independence in mind. - - Note that the changes that are required to make a driver architecture - independent aren't that complicated. You only need to do the - following: - - -multiply all jiffies related values by HZ/100 to account for the - different HZ value that the Alpha uses. (i.e timeout=2; becomes - timeout=2*HZ/100;) - - -replace any I/O memory (640k to 1MB) pointer dereferences with the - appropriate readb() writeb() readl() writel() calls, as shown in this - example. - - - ______________________________________________________________________ - - int *mem_base = (int *)dev->mem_start; - - mem_base[0] = 0xba5eba5e; - + unsigned long mem_base = dev->mem_start; - + writel(0xba5eba5e, mem_base); - ______________________________________________________________________ - - - - -replace all memcpy() calls that have I/O memory as source or target - destinations with the appropriate one of memcpy_fromio() or - memcpy_toio(). - - Details on handling memory accesses in an architecture independent - fashion are documented in the file linux/Documentation/IO-mapping.txt - that comes with recent kernels. - - - 2.9.16. Ethernet for Linux on SUN/Sparc Hardware. - - For the most up to date information on Sparc stuff, try the following - URL: - - Linux Sparc - - Note that some Sparc ethernet hardware gets its MAC address from the - host computer, and hence you can end up with multiple interfaces all - with the same MAC address. If you need to put more than one interface - on the same net then use the hw option to ifconfig to assign unique - MAC address. - - Issues regarding porting PCI drivers to the Sparc platform are similar - to those mentioned above for the AXP platform. In addition there may - be some endian issues, as the Sparc is big endian, and the AXP and - ix86 are little endian. - - - 2.9.17. Ethernet for Linux on Other Hardware. - - There are several other hardware platforms that Linux can run on, such - as Atari/Amiga (m68k). As in the Sparc case it is best to check with - the home site of each Linux port to that platform to see what is - currently supported. (Links to such sites are welcome here - send - them in!) - - - 2.9.18. Linking 10 or 100 BaseT without a Hub - - Can I link 10/100BaseT (RJ45) based systems together without a hub? - - You can link 2 machines, but no more than that, without extra - devices/gizmos, by using a crossover cable. Some newer fancy - autonegotiaton cards may not work on a crossover cable though. And - no, you can't hack together a hub just by crossing a few wires and - stuff. It's pretty much impossible to do the collision signal right - without duplicating a hub. - - - 2.9.19. SIOCSIFxxx: No such device - - I get a bunch of `SIOCSIFxxx: No such device' messages at boot, - followed by a `SIOCADDRT: Network is unreachable' What is wrong? - - Your ethernet device was not detected at boot/module insertion time, - and when ifconfig and route are run, they have no device to work with. - Use dmesg | more to review the boot messages and see if there are any - messages about detecting an ethernet card. - - - 2.9.20. SIOCSFFLAGS: Try again - - I get `SIOCSFFLAGS: Try again' when I run `ifconfig' -- Huh? - - Some other device has taken the IRQ that your ethercard is trying to - use, and so the ethercard can't use the IRQ. You don't necessairly - need to reboot to resolve this, as some devices only grab the IRQs - when they need them and then release them when they are done. Examples - are some sound cards, serial ports, floppy disk driver, etc. You can - type cat /proc/interrupts to see which interrupts are presently in - use. Most of the Linux ethercard drivers only grab the IRQ when they - are opened for use via `ifconfig'. If you can get the other device to - `let go' of the required IRQ line, then you should be able to `Try - again' with ifconfig. - - - 2.9.21. Using `ifconfig' and Link UNSPEC with HW-addr of - 00:00:00:00:00:00 - - - When I run ifconfig with no arguments, it reports that LINK is UNSPEC - (instead of 10Mbs Ethernet) and it also says that my hardware address - is all zeros. - - This is because people are running a newer version of the `ifconfig' - program than their kernel version. This new version of ifconfig is not - able to report these properties when used in conjunction with an older - kernel. You can either upgrade your kernel, `downgrade' ifconfig, or - simply ignore it. The kernel knows your hardware address, so it really - doesn't matter if ifconfig can't read it. - - You may also get strange information if the ifconfig program you are - using is a lot older than the kernel you are using. - - - 2.9.22. Huge Number of RX and TX Errors - - When I run ifconfig with no arguments, it reports that I have a huge - error count in both rec'd and transmitted packets. It all seems to - work ok -- What is wrong? - - Look again. It says RX packets big number PAUSE errors 0 PAUSE dropped - 0 PAUSE overrun 0. And the same for the TX column. Hence the big - numbers you are seeing are the total number of packets that your - machine has rec'd and transmitted. If you still find it confusing, - try typing cat /proc/net/dev instead. - - - 2.9.23. Entries in /dev/ for Ethercards - - I have /dev/eth0 as a link to /dev/xxx. Is this right? - - Contrary to what you have heard, the files in /dev/* are not used. - You can delete any /dev/wd0, /dev/ne0 and similar entries. - - - 2.9.24. Access to the raw Ethernet Device - - How do I get access to the raw ethernet device in linux, without going - through TCP/IP and friends? - - - ______________________________________________________________________ - int s=socket(AF_INET,SOCK_PACKET,htons(ETH_P_ALL)); - ______________________________________________________________________ - - - - This gives you a socket receiving every protocol type. Do recvfrom() - calls to it and it will fill the sockaddr with device type in - sa_family and the device name in the sa_data array. I don't know who - originally invented SOCK_PACKET for Linux (its been in for ages) but - its superb stuff. You can use it to send stuff raw too via sendto() - calls. You have to have root access to do either of course. - - - 3. Performance Tips - - Here are some tips that you can use if you are suffering from low - ethernet throughput, or to gain a bit more speed on those ftp - transfers. - - The ttcp.c program is a good test for measuring raw throughput speed. - Another common trick is to do a ftp> get large_file /dev/null where - large_file is > 1MB and residing in the buffer cache on the Tx'ing - machine. (Do the `get' at least twice, as the first time will be - priming the buffer cache on the Tx'ing machine.) You want the file in - the buffer cache because you are not interested in combining the file - access speed from the disk into your measurement. Which is also why - you send the incoming data to /dev/null instead of onto the disk. - - - 3.1. General Concepts - - Even an 8 bit card is able to receive back-to-back packets without any - problems. The difficulty arises when the computer doesn't get the Rx'd - packets off the card quick enough to make room for more incoming - packets. If the computer does not quickly clear the card's memory of - the packets already received, the card will have no place to put the - new packet. - - In this case the card either drops the new packet, or writes over top - of a previously received packet. Either one seriously interrupts the - smooth flow of traffic by causing/requesting re-transmissions and can - seriously degrade performance by up to a factor of 5! - - Cards with more onboard memory are able to ``buffer'' more packets, - and thus can handle larger bursts of back-to-back packets without - dropping packets. This in turn means that the card does not require - as low a latency from the the host computer with respect to pulling - the packets out of the buffer to avoid dropping packets. - - Most 8 bit cards have an 8kB buffer, and most 16 bit cards have a 16kB - buffer. Most Linux drivers will reserve 3kB of that buffer (for two Tx - buffers), leaving only 5kB of receive space for an 8 bit card. This is - room enough for only three full sized (1500 bytes) ethernet packets. - - - 3.2. ISA Cards and ISA Bus Speed - - As mentioned above, if the packets are removed from the card fast - enough, then a drop/overrun condition won't occur even when the amount - of Rx packet buffer memory is small. The factor that sets the rate at - which packets are removed from the card to the computer's memory is - the speed of the data path that joins the two -- that being the ISA - bus speed. (If the CPU is a dog-slow 386sx-16, then this will also - play a role.) - - The recommended ISA bus clock is about 8MHz, but many motherboards and - peripheral devices can be run at higher frequencies. The clock - frequency for the ISA bus can usually be set in the CMOS setup, by - selecting a divisor of the mainboard/CPU clock frequency. Some ISA and - PCI/ISA mainboards may not have this option, and so you are stuck with - the factory default. - - For example, here are some receive speeds as measured by the TTCP - program on a 40MHz 486, with an 8 bit WD8003EP card, for different - ISA bus speeds. - - - ______________________________________________________________________ - ISA Bus Speed (MHz) Rx TTCP (kB/s) - ------------------- -------------- - 6.7 740 - 13.4 970 - 20.0 1030 - 26.7 1075 - ______________________________________________________________________ - - - - You would be hard pressed to do better than 1075kB/s with any 10Mb/s - ethernet card, using TCP/IP. However, don't expect every system to - work at fast ISA bus speeds. Most systems will not function properly - at speeds above 13MHz. (Also, some PCI systems have the ISA bus speed - fixed at 8MHz, so that the end user does not have the option of - increasing it.) - - In addition to faster transfer speeds, one will usually also benefit - from a reduction in CPU usage due to the shorter duration memory and - I/O cycles. (Note that hard disks and video cards located on the ISA - bus will also usually experience a performance increase from an - increased ISA bus speed.) - - Be sure to back up your data prior to experimenting with ISA bus - speeds in excess of 8MHz, and thouroughly test that all ISA - peripherals are operating properly after making any speed increases. - - - 3.3. Setting the TCP Rx Window - - - Once again, cards with small amounts of onboard RAM and relatively - slow data paths between the card and the computer's memory run into - trouble. The default TCP Rx window setting is 32kB, which means that a - fast computer on the same subnet as you can dump 32k of data on you - without stopping to see if you received any of it okay. - - Recent versions of the route command have the ability to set the size - of this window on the fly. Usually it is only for the local net that - this window must be reduced, as computers that are behind a couple of - routers or gateways are `buffered' enough to not pose a problem. An - example usage would be: - - - ______________________________________________________________________ - route add ... window - ______________________________________________________________________ - - - - where win_size is the size of the window you wish to use (in bytes). - An 8 bit 3c503 card on an ISA bus operating at a speed of 8MHz or less - would work well with a window size of about 4kB. Too large a window - will cause overruns and dropped packets, and a drastic reduction in - ethernet throughput. You can check the operating status by doing a cat - /proc/net/dev which will display any dropped or overrun conditions - that occurred. - - - 3.4. Increasing NFS performance - - Some people have found that using 8 bit cards in NFS clients causes - poorer than expected performance, when using 8kB (native Sun) NFS - packet size. - - The possible reason for this could be due to the difference in on - board buffer size between the 8 bit and the 16 bit cards. The maximum - ethernet packet size is about 1500 bytes. Now that 8kB NFS packet will - arrive as about 6 back to back maximum size ethernet packets. Both the - 8 and 16 bit cards have no problem Rx'ing back to back packets. The - problem arises when the machine doesn't remove the packets from the - cards buffer in time, and the buffer overflows. The fact that 8 bit - cards take an extra ISA bus cycle per transfer doesn't help either. - What you can do if you have an 8 bit card is either set the NFS - transfer size to 2kB (or even 1kB), or try increasing the ISA bus - speed in order to get the card's buffer cleared out faster. I have - found that an old WD8003E card at 8MHz (with no other system load) can - keep up with a large receive at 2kB NFS size, but not at 4kB, where - performance was degraded by a factor of three. - - On the other hand, if the default mount option is to use 1kB size and - you have at least a 16 bit ISA card, you may find a significant - increase in going to 4kB (or even 8kB). - - - 4. Vendor/Manufacturer/Model Specific Information - - - The following lists many cards in alphabetical order by vendor name - and then product identifier. Beside each product ID, you will see - either `Supported', `Semi-Supported', `Obsolete', `Dropped' or `Not - Supported'. - - Supported means that a driver for that card exists, and many people - are happily using it and it seems quite reliable. - - Semi-Supported means that a driver exists, but at least one of the - following descriptions is true: (1) The driver and/or hardware are - buggy, which may cause poor performance, failing connections or even - crashes. (2) The driver is new or the card is fairly uncommon, and - hence the driver has seen very little use/testing and the driver - author has had very little feedback. Obviously (2) is preferable to - (1), and the individual description of the card/driver should make it - clear which one holds true. In either case, you will probably have to - answer `Y' when asked ``Prompt for development and/or incomplete - code/drivers?'' when running make config. - - Obsolete means that a driver exists, and was probably at one time - considered Semi-Supported. However, due to lack of interest, users, - and support, it is known to not work anymore. The driver is still in - the kernel, but disabled in the configuration option menu. The - general plan is that if it does not get updated by the next kernel - development cycle, it will be dropped entirely. Usually a driver - marked obsolete simply needs an update to match changes in the kernel - to driver interface, or other similar kernel API changes. - - Dropped means that the driver was once obsolete (see above) and since - there was not enough interest in fixing it, it has been removed from - the current kernel tree. There is nothing stopping anyone from - copying the driver from an older kernel, making the required updates - and using it. - - Not Supported means there is not a driver currently available for that - card. This could be due to a lack of interest in hardware that is - rare/uncommon, or because the vendors won't release the hardware - documentation required to write a driver. - - Note that the difference between `Supported' and `Semi-Supported' is - rather subjective, and is based on user feedback. So be warned that - you may find a card listed as semi-supported works perfectly for you - (which is great), or that a card listed as supported gives you no end - of troubles and problems (which is not so great). - - After the status, the name of the driver given in the linux kernel is - listed. This will also be the name of the driver module that would be - used in the alias eth0 driver_name line that is found in the - /etc/modules.conf module configuration file. - - - - 4.1. 3Com - - - If you are not sure what your card is, but you think it is a 3Com - card, you can probably figure it out from the assembly number. 3Com - has a document `Identifying 3Com Adapters By Assembly Number' (ref - 24500002) that would most likely clear things up. Also check out - their WWW/FTP site with various goodies: www.3Com.com that you may - find useful (including PDFs with technical info for their cards). - - - - 4.1.1. 3c501 - - Status: Semi-Supported, Driver Name: 3c501 - - This obsolete stone-age 8 bit card is really too brain-damaged to use. - Avoid it like the plague. Do not purchase this card, even as a joke. - It's performance is horrible, and it breaks in many ways. - - For those not yet convinced, the 3c501 can only do one thing at a time - -- while you are removing one packet from the single-packet buffer it - cannot receive another packet, nor can it receive a packet while - loading a transmit packet. This was fine for a network between two - 8088-based computers where processing each packet and replying took - 10's of msecs, but modern networks send back-to-back packets for - almost every transaction. - - AutoIRQ works, DMA isn't used, the autoprobe only looks at 0x280 and - 0x300, and the debug level is set with the third boot-time argument. - - Once again, the use of a 3c501 is strongly discouraged! Even more so - with a IP multicast kernel, as you will grind to a halt while - listening to all multicast packets. See the comments at the top of the - source code for more details. - - - 4.1.2. EtherLink II, 3c503, 3c503/16 - - Status: Supported, Driver Name: 3c503 (+8390) - - The 3c503 does not have ``EEPROM setup'', so a diagnostic/setup - program isn't needed before running the card with Linux. The shared - memory address of the 3c503 is set using jumpers that are shared with - the boot PROM address. This is confusing to people familiar with other - ISA cards, where you always leave the jumper set to ``disable'' unless - you have a boot PROM. - - These cards should be about the same speed as the same bus width - WD80x3, but turn out to be actually a bit slower. These shared-memory - ethercards also have a programmed I/O mode that doesn't use the 8390 - facilities (their engineers found too many bugs!) The Linux 3c503 - driver can also work with the 3c503 in programmed-I/O mode, but this - is slower and less reliable than shared memory mode. Also, programmed- - I/O mode is not as well tested when updating the drivers. You - shouldn't use the programmed-I/O mode unless you need it for - compatibility with another operating system that is used on the same - computer. - - The 3c503's IRQ line is set in software, with no hints from an EEPROM. - Unlike the MS-DOS drivers, the Linux driver has capability to autoIRQ: - it uses the first available IRQ line in {5,2/9,3,4}, selected each - time the card is ifconfig'ed. Note that `ifconfig' will return EAGAIN - if no IRQ line is available at that time. - - - Some common problems that people have with the 503 are discussed in - ``Problems with...''. - - If you intend on using this driver as a loadable module you should - probably see ``Using the Ethernet Drivers as Modules'' for module - specific information. - - - 4.1.3. Etherlink Plus 3c505 - - Status: Semi-Supported, Driver Name: 3c505 - - These cards use the i82586 chip but are not that many of them about. - It is included in the standard kernel, but it is classed as an alpha - driver. See ``Alpha Drivers'' for important information on using - alpha-test ethernet drivers with Linux. - - There is also the file /usr/src/linux/drivers/net/README.3c505 that - you should read if you are going to use one of these cards. It - contains various options that you can enable/disable. - - - 4.1.4. Etherlink-16 3c507 - - Status: Semi-Supported, Driver Name: 3c507 - - This card uses one of the Intel chips, and the development of the - driver is closely related to the development of the Intel Ether - Express driver. The driver is included in the standard kernel - release, but as an alpha driver. See ``Alpha Drivers'' for important - information on using alpha-test ethernet drivers with Linux. - - - 4.1.5. Etherlink III, 3c509 / 3c509B - - Status: Supported, Driver Name: 3c509 - - This card was fairly inexpensive and had good performance for an ISA - non-bus-master design. The drawbacks were that the original 3c509 - required very low interrupt latency. The 3c509B shouldn't suffer from - the same problem, due to having a larger buffer. (See below.) These - cards use PIO transfers, similar to a ne2000 card, and so a shared - memory card such as a wd8013 will be more efficient in comparison. - - The original 3c509 had a small packet buffer (4kB total, 2kB Rx, 2kB - Tx), causing the driver to occasionally drop a packet if interrupts - were masked for too long. To minimize this problem, you can try - unmasking interrupts during IDE disk transfers (see man hdparm) and/or - increasing your ISA bus speed so IDE transfers finish sooner. - - The newer model 3c509B has 8kB on board, and the buffer can be split - 4/4, 5/3 or 6/2 for Rx/Tx. This setting is changed with the DOS - configuration utility, and is stored on the EEPROM. This should - alleviate the above problem with the original 3c509. - - 3c509B users should use either the supplied DOS utility to disable the - plug and play support, and to set the output media to what they - require. The linux driver currently does not support the Autodetect - media setting, so you have to select 10Base-T or 10Base-2 or AUI. - Note that if you turn off PnP entirely, you should exit the utility - and and then follow that with a hard reset to ensure that the new - settings take effect. - - Some people ask about the ``Server or Workstation'' and ``Highest - Modem Speed'' settings presented in the DOS configuration utility. - These settings don't actually change any hardware settings, rather - they are only tuning hints to the DOS driver. The linux driver does - not need or use these hints. Also, DON'T enable EISA mode on this - ISA card unless you really have an EISA machine, or you may end up - needing to find an EISA machine just to get your ISA card back into - ISA mode! - - The card with the lowest hardware ethernet address will always end up - being eth0 in a multiple ISA 3c509 configuration. This shouldn't - matter to anyone, except for those people who want to assign a 6 byte - hardware address to a particular interface. If this really bothers - you, have a look at Donald's latest driver, as you may be able to use - a 0x3c509 value in the unused mem address fields to order the - detection to suit your needs. - - - - 4.1.6. 3c515 - - Status: Supported, Driver Name: 3c515 - - This is 3Com's ISA 100Mbps offering, codenamed ``CorkScrew''. Note - that you will never achieve full 100Mbps on an ISA bus. - - - - 4.1.7. 3c523 - - Status: Semi-Supported, Driver Name: 3c523 - - This MCA bus card uses the i82586, and Chris Beauregard has modified - the ni52 driver to work with these cards. - - - - 4.1.8. 3c527 Etherlink MC/32 - - Status: Semi-Supported, Driver Name: 3c527 - - Yes, another i82586 MCA card. No, not too much interest in it. Better - chances with the 3c529 if you are stuck with MCA, since it uses the - tried and true 3c509 core. - - - 4.1.9. 3c529 - - Status: Supported, Driver Name: 3c509 - - This card actually uses the same chipset as the 3c509. People have - actually been using this card in MCA machines. - - - 4.1.10. 3c339 Token Ring PCI Velocity XL - - Status: Semi-Supported, Driver Name: tmspci - - Token ring driver updates can be found at: - - http://www.linuxtr.net/download.html - - - 4.1.11. 3c556 - - Status: Supported, Driver Name: 3c59x - - A mini PCI NIC found on various IBM and HP notebooks. Also knownas a - `laptop tornado'. - 4.1.12. 3c562 - - Status: Supported, Driver Name: 3c589_cs - - This PCMCIA card is the combination of a 3c589B ethernet card with a - modem. The modem appears as a standard modem to the end user. The only - difficulty is getting the two separate linux drivers to share one - interrupt. There are a couple of new registers and some hardware - interrupt sharing support. Thanks again to Cameron for getting a - sample unit and documentation sent off to David Hinds. - - - 4.1.13. 3c575 - - Status: Supported, Driver Name: 3c59x - - Note that to support this Cardbus device in old 2.2 kernels, you had - to use 3c575_cb.c from the pcmcia_cs package. - - - - 4.1.14. 3c579 - - Status: Supported, Driver Name: 3c509 - - The EISA version of the 509. The current EISA version uses the same 16 - bit wide chip rather than a 32 bit interface, so the performance - increase isn't stunning. Make sure the card is configured for EISA - addressing mode. Read the above 3c509 section for info on the driver. - - - - 4.1.15. 3c589 / 3c589B - - Status: Semi-Supported, Driver Name: 3c589_cs - - Many people have been using this PCMCIA card for quite some time now. - The "B" in the name means the same here as it does for the 3c509 case. - - - - 4.1.16. 3c590 / 3c595 - - Status: Supported, Driver Name: 3c59x - - These ``Vortex'' cards are for PCI bus machines, with the '590 being - 10Mbps and the '595 being 3Com's 100Mbs offering. Also note that you - can run the '595 as a '590 (i.e. in a 10Mbps mode). The 3c59x line - was replaced by the 3c9xx line quite some time ago, and so these cards - are considered rather old. - - Note that there are two different 3c590 cards out there, early models - that had 32kB of on-board memory, and later models that only have 8kB - of memory. The 3c595 cards have 64kB, as you can't get away with only - 8kB RAM at 100Mbps! - - - 4.1.17. 3c592 / 3c597 - - Status: Supported, Driver Name: 3c59x - - These are the EISA versions of the 3c59x series of cards. The - 3c592/3c597 (aka Demon) should work with the vortex driver discussed - above. - - - 4.1.18. 3c900 / 3c905 / 3c905B / 3c905C / 3c905CX - - Status: Supported, Driver Name: 3c59x - - These cards (aka `Boomerang', aka EtherLink III XL) have been released - to take over the place of the 3c590/3c595 cards, with some additional - support added to the vortex/3c59x driver. The driver found in older - kernels may not support the latest revision(s) of these cards, so you - may need a driver update. - - Note that the 3c905C has support for TCP/UDP/IP checksumming in - hardware support - meaning less work for the computer CPU to do! - - - 4.1.19. 3c985 (Gigabit acenic, aka Tigon2) - - Status: Supported, Driver Name: acenic - - This driver supports several other Gigabit cards in addition to the - 3Com model. - - - 4.1.20. 3c996 (Gigabit broadcom, aka Tigon3) - - Status: Supported, Driver Name: tg3, bcm5700(old) - - This driver supports several other Gigabit cards in addition to the - 3Com model. The tg3 driver is a complete rewrite by several linux - developers in an effort to improve on the vendor supplied bcm5700 - driver. - - - 4.2. Accton - - - - 4.2.1. Accton MPX - - Status: Supported, Driver Name: ne (+8390) - - Don't let the name fool you. This is still supposed to be a NE2000 - compatible card, and should work with the ne2000 driver. - - - 4.2.2. Accton EN1203, EN1207, EtherDuo-PCI - - Status: Supported, Driver Name: de4x5, tulip, OR 8139too - - Apparently there have been several revisions of the EN1207 (A through - D) with A, B, and C being tulip based and the D revision being RealTek - 8139 based (different driver). So as with all purchases, you should - try and make sure you can return it if it doesn't work for you. - - - 4.2.3. Accton EN2209 Parallel Port Adaptor (EtherPocket) - - Status: Semi-Supported, Driver Name: ? - - A driver for these parallel port adapters was available around the - time of the 2.0 or 2.1 kernel. It's last known location was: - - http://www.unix-ag.uni-siegen.de/~nils/accton_linux.html - - - - 4.2.4. Accton EN2212 PCMCIA Card - - Status: Supported, Driver Name: pcnet_cs - - - - 4.3. Adaptec - - Note that some of the older Adaptec 32 bit boards used a tulip clone. - - - 4.3.1. Adaptec DuraLAN/Starfire, 64bit ANA-6922 - - Status: Supported, Driver Name: starfire - - - 4.4. Allied Telesyn/Telesis - - - - 4.4.1. AT1500 - - Status: Supported, Driver Name: lance - - These are a series of low-cost ethercards using the 79C960 version of - the AMD LANCE. These are bus-master cards, and hence one of the faster - ISA bus ethercards available. - - DMA selection and chip numbering information can be found in ``AMD - LANCE''. - - - 4.4.2. AT1700 - - Status: Supported, Driver Name: at1700 - - Note that to access this driver during make config you still have to - answer `Y' when asked ``Prompt for development and/or incomplete - code/drivers?'' at the first. This is simply due to lack of feedback - on the driver stability due to it being a relatively rare card. If - you have problems with the driver that ships with the kernel then you - may be interested in the alternative driver available at: - http://www.cc.hit-u.ac.jp/nagoya/at1700/ - - The Allied Telesis AT1700 series ethercards are based on the Fujitsu - MB86965. This chip uses a programmed I/O interface, and a pair of - fixed-size transmit buffers. This allows small groups of packets to be - sent back-to-back, with a short pause while switching buffers. - - The Fujitsu chip used on the AT1700 has a design flaw: it can only be - fully reset by doing a power cycle of the machine. Pressing the reset - button doesn't reset the bus interface. This wouldn't be so bad, - except that it can only be reliably detected when it has been freshly - reset. The solution/work-around is to power-cycle the machine if the - kernel has a problem detecting the AT1700. - - - 4.4.3. AT2400 - - Status: Supported, Driver Name: ne, ne2k-pci (+8390) - - Yet another PCI NE2000 clone card. This one is based on the RealTek - 8029 chip. - - - - 4.4.4. AT2450 - - Status: Supported, Driver Name: pcnet32 - - This is the PCI version of the AT1500, and it doesn't suffer from the - problems that the Boca 79c970 PCI card does. DMA selection and chip - numbering information can be found in ``AMD LANCE''. - - - 4.4.5. AT2500 - - Status: Supported, Driver Name: 8139too, rtl8139(old) - - This card uses the RealTek 8139 chip - see the section ``RealTek - 8139''. - - - 4.4.6. AT2540FX - - Status: Semi-Supported, Driver Name: eepro100 - - This card uses the i82557 chip, and hence may/should work with the - eepro100 driver. If you try this please send in a report so this - information can be updated. - - - 4.5. AMD / Advanced Micro Devices - - - Carl Ching of AMD was kind enough to provide a very detailed - description of all the relevant AMD ethernet products which helped - clear up this section. - - - 4.5.1. AMD LANCE (7990, 79C960/961/961A, PCnet-ISA) - - Status: Supported, Driver Name: lance - - There really is no AMD ethernet card. You are probably reading this - because the only markings you could find on your card said AMD and the - above number. The 7990 is the original `LANCE' chip, but most stuff - (including this document) refer to all these similar chips as `LANCE' - chips. (...incorrectly, I might add.) - - These above numbers refer to chips from AMD that are the heart of many - ethernet cards. For example, the Allied Telesis AT1500 (see - ``AT1500'') and the NE1500/2100 (see ``NE1500'') use these chips. - - The 7990/79c90 have long been replaced by newer versions. The 79C960 - (a.k.a. PCnet-ISA) essentially contains the 79c90 core, along with all - the other hardware support required, which allows a single-chip - ethernet solution. The 79c961 (PCnet-ISA+) is a jumperless Plug and - Play version of the '960. The final chip in the ISA series is the - 79c961A (PCnet-ISA II), which adds full duplex capabilities. All - cards with one of these chips should work with the lance.c driver, - with the exception of very old cards that used the original 7990 in a - shared memory configuration. These old cards can be spotted by the - lack of jumpers for a DMA channel. - - One common problem people have is the `busmaster arbitration failure' - message. This is printed out when the LANCE driver can't get access to - the bus after a reasonable amount of time has elapsed (50us). This - usually indicates that the motherboard implementation of bus-mastering - DMA is broken, or some other device is hogging the bus, or there is a - DMA channel conflict. If your BIOS setup has the `GAT option' (for - Guaranteed Access Time) then try toggling/altering that setting to see - if it helps. - - Also note that the driver only looks at the addresses: 0x300, 0x320, - 0x340, 0x360 for a valid card, and any address supplied by an ether= - boot argument is silently ignored (this will be fixed) so make sure - your card is configured for one of the above I/O addresses for now. - - The driver will still work fine, even if more than 16MB of memory is - installed, since low-memory `bounce-buffers' are used when needed - (i.e. any data from above 16MB is copied into a buffer below 16MB - before being given to the card to transmit.) - - The DMA channel can be set with the low bits of the otherwise-unused - dev->mem_start value (a.k.a. PARAM_1). (see ``PARAM_1'') If unset it - is probed for by enabling each free DMA channel in turn and checking - if initialization succeeds. - - The HP-J2405A board is an exception: with this board it's easy to read - the EEPROM-set values for the IRQ, and DMA. - - - 4.5.2. AMD 79C901 (Home PNA PHY) - - Status: Supported, Driver Name: sis900 - - The sis900.txt file in 2.4 kernels states that "AM79C901 HomePNA PHY - is not thoroughly tested, there may be some bugs in the "on the fly" - change of transceiver." so you may want to check that if using a newer - kernel. - - - 4.5.3. AMD 79C965 (PCnet-32) - - Status: Supported, Driver Name: pcnet32 - - This is the PCnet-32 -- a 32 bit bus-master version of the original - LANCE chip for VL-bus and local bus systems. chip. While these chips - can be operated with the standard lance.c driver, a 32 bit version - (pcnet32.c) is also available that does not have to concern itself - with any 16MB limitations associated with the ISA bus. - - - 4.5.4. AMD 79C970/970A (PCnet-PCI) - - Status: Supported, Driver Name: pcnet32 - - This is the PCnet-PCI -- similar to the PCnet-32, but designed for PCI - bus based systems. Please see the above PCnet-32 information. This - means that you need to build a kernel with PCI BIOS support enabled. - The '970A adds full duplex support along with some other features to - the original '970 design. - - Note that the Boca implementation of the 79C970 fails on fast Pentium - machines. This is a hardware problem, as it affects DOS users as well. - See the Boca section for more details. - - - 4.5.5. AMD 79C971 (PCnet-FAST) - - Status: Supported, Driver Name: pcnet32 - - This is AMD's 100Mbit chip for PCI systems, which also supports full - duplex operation. It was introduced in June 1996. - - - - 4.5.6. AMD 79C972 (PCnet-FAST+) - - Status: Supported, Driver Name: pcnet32 - - This has been confirmed to work just like the '971. - - - 4.5.7. AMD 79C974 (PCnet-SCSI) - - Status: Supported, Driver Name: pcnet32 - - This is the PCnet-SCSI -- which is basically treated like a '970 from - an Ethernet point of view. Also see the above information. Don't ask - how well the SCSI half of the chip is supported -- this is the - Ethernet-HowTo, not the SCSI-HowTo. - - - 4.6. Ansel Communications - - - - 4.6.1. AC3200 EISA - - Status: Semi-Supported, Driver Name: ac3200 - - This EISA bus card is based on the common 8390 chip used in the ne2000 - and wd80x3 cards. Note that to access this driver during make config - you still have to answer `Y' when asked ``Prompt for development - and/or incomplete code/drivers?'' at the first. This is simply due to - lack of feedback on the driver stability due to it being a relatively - rare card. Feedback has been low even though the driver has been in - the kernel since v1.1.25. - - - 4.7. Apricot - - - - 4.7.1. Apricot Xen-II On Board Ethernet - - Status: Semi-Supported, Driver Name: apricot - - This on board ethernet uses an i82596 bus-master chip. It can only be - at I/O address 0x300. By looking at the driver source, it appears - that the IRQ is also hardwired to 10. - - Earlier versions of the driver had a tendency to think that anything - living at 0x300 was an apricot NIC. Since then the hardware address - is checked to avoid these false detections. - - - 4.8. Arcnet - - Status: Supported, Driver Name: arcnet (arc-rimi, com90xx, com20020) - - With the very low cost and better performance of ethernet, chances are - that most places will be giving away their Arcnet hardware for free, - resulting in a lot of home systems with Arcnet. - - An advantage of Arcnet is that all of the cards have identical - interfaces, so one driver will work for everyone. It also has built in - error handling so that it supposedly never loses a packet. (Great for - UDP traffic!) Note that the arcnet driver uses `arc0' as its name - instead of the usual `eth0' for ethernet devices. - - - There are information files contained in the standard kernel for - setting jumpers, general hints and where to mail bug reports. - - Supposedly the driver also works with the 100Mbs ARCnet cards as well! - - - - 4.9. Boca Research - - - Yes, they make more than just multi-port serial cards. - - - 4.9.1. Boca BEN400 - - Status: Supported, Driver Name: ne (+8390) - - Apparently this is a NE2000 clone, using a VIA VT86C916 chip. - - - 4.9.2. Boca BEN (ISA, VLB, PCI) - - Status: Supported, Driver Name: lance, pcnet32 - - These cards are based on AMD's PCnet chips. Many people reported - endless problems with these VLB/PCI cards. The problem was supposedly - due to Boca not installing some capacitors that AMD recommended. (The - older ISA cards don't appear to suffer the same problems.) Boca was - offering a `warranty repair' for affected owners, which involved - adding one of the missing capacitors, but it appears that this fix - didn't work 100 percent for most people, although it helped some. The - cards are so old now that it wouldn't be worth pursuing. - - More general information on the AMD chips can be found in ``AMD - LANCE''. - - - 4.10. Broadcom - - - - 4.10.1. Broadcom Tigon2 - - Status: Supported, Driver Name: acenic - - - 4.10.2. Broadcom Tigon3 - - Status: Supported, Driver Name: tg3 - - - - 4.11. Cabletron - - - Lack of programming information from Cabletron at the time drivers - were being developed for these cards meant that the drivers were not - supported as well as they could have been. - - Apparently Cabletron has since changed their policy with respect to - programming information (like Xircom). However, at this point in - time, there is little demand for modified/updated drivers for the old - E20xx and E21xx cards. - - - - 4.11.1. E10**, E10**-x, E20**, E20**-x - - Status: Semi-Supported, Driver Name: ne (+8390) - - These are NEx000 almost-clones that are reported to work with the - standard NEx000 drivers, thanks to a ctron-specific check during the - probe. - - - 4.11.2. E2100 - - Status: Semi-Supported, Driver Name: e2100 (+8390) - - The E2100 is a poor design. Whenever it maps its shared memory in - during a packet transfer, it maps it into the whole 128K region! That - means you can't safely use another interrupt-driven shared memory - device in that region, including another E2100. It will work most of - the time, but every once in a while it will bite you. (Yes, this - problem can be avoided by turning off interrupts while transferring - packets, but that will almost certainly lose clock ticks.) Also, if - you mis-program the board, or halt the machine at just the wrong - moment, even the reset button won't bring it back. You will have to - turn it off and leave it off for about 30 seconds. - - Media selection is automatic, but you can override this with the low - bits of the dev->mem_end parameter. See ``PARAM_2''. Module users can - specify an xcvr=N value as an option in the /etc/modules.conf file. - - Also, don't confuse the E2100 for a NE2100 clone. The E2100 is a - shared memory NatSemi DP8390 design, roughly similar to a brain- - damaged WD8013, whereas the NE2100 (and NE1500) use a bus-mastering - AMD LANCE design. - - If you intend on using this driver as a loadable module you should - probably see ``Using the Ethernet Drivers as Modules'' for module - specific information. - - - 4.11.3. E22** - - Status: Semi-Supported, Driver Name: lance - - According to information in a Cabletron Tech Bulletin, these cards use - the standard AMD PC-Net chipset (see ``AMD PC-Net'') and should work - with the generic lance driver. - - - - 4.12. Cogent - - - - 4.12.1. EM100-ISA/EISA - - Status: Semi-Supported, Driver Name: smc9194 - - These cards use the SMC 91c100 chip and may work with the SMC 91c92 - driver, but this has yet to be verified. - - - 4.12.2. Cogent eMASTER+, EM100-PCI, EM400, EM960, EM964 - - Status: Supported, Driver Name: de4x5, tulip - - These are yet another DEC 21040 implementation that should hopefully - work fine with the standard 21040 driver. - The EM400 and the EM964 are four port cards using a DEC 21050 bridge - and 4 21040 chips. - - See ``DEC 21040'' for more information on these cards, and the present - driver situation. - - - 4.13. Compaq - - - Compaq aren't really in the business of making ethernet cards, but a - lot of their systems have embedded ethernet controllers on the - motherboard. - - - 4.13.1. Compaq Deskpro / Compaq XL (Embedded AMD Chip) - - Status: Supported, Driver Name: pcnet32 - - Machines such as the XL series have an AMD 79c97x PCI chip on the - mainboard that can be used with the standard LANCE driver. But before - you can use it, you have to do some trickery to get the PCI BIOS to a - place where Linux can see it. Frank Maas was kind enough to provide - the details: - - `` The problem with this Compaq machine however is that the PCI - directory is loaded in high memory, at a spot where the Linux kernel - can't (won't) reach. Result: the card is never detected nor is it - usable (sideline: the mouse won't work either) The workaround (as - described thoroughly in http://www-c724.uibk.ac.at/XL/) is to load MS- - DOS, launch a little driver Compaq wrote and then load the Linux - kernel using LOADLIN. Ok, I'll give you time to say `yuck, yuck', but - for now this is the only working solution I know of. The little driver - simply moves the PCI directory to a place where it is normally stored - (and where Linux can find it).'' - - The DOS utility movepci.exe is apparently in Compaq's support package - SP1599.EXE if you still need it. - - - More general information on the AMD chips can be found in ``AMD - LANCE''. - - - 4.13.2. Compaq Nettelligent/NetFlex (Embedded ThunderLAN Chip) - - Status: Supported, Driver Name: tlan - - These systems use a Texas Instruments ThunderLAN chip Information on - the ThunderLAN driver can be found in ``ThunderLAN''. - - - 4.13.3. Compaq PCI card - - Status: Supported, Driver Name: eepro100 - - Check your card - if it has part number 323551-821 and/or an intel - 82558 chip on it then it is another Intel EEPro100 based card. - - - - 4.14. Danpex - - - - 4.14.1. Danpex EN9400 - - Status: Supported, Driver Name: de4x5, tulip - - Yet another card based on the DEC 21040 chip, reported to work fine, - and at a relatively cheap price. - - See ``DEC 21040'' for more information on these cards, and the present - driver situation. - - - 4.15. Davicom - - - - 4.15.1. Davicom DM9102 - - Status: Supported, Driver Name: tulip, dmfe - - This is an almost clone of the tulip chip and so you can use the tulip - driver or the vendor supplied dmfe driver. Usual advice is to try - tulip first, and then try dmfe. Apparently dmfe is only better for - very very old cards. - - - 4.16. D-Link - - - - 4.16.1. DE-100, DE-200, DE-220-T, DE-250 - - Status: Supported, Driver Name: ne (+8390) - - Some of the early D-Link cards didn't have the 0x57 PROM signature, - but the ne2000 driver knows about them. For the software configurable - cards, you can get the config program from www.dlink.com. Note that - there are also cards from Digital (DEC) that are also named DE100 and - DE200, but the similarity stops there. - - - 4.16.2. DE-520 - - Status: Supported, Driver Name: pcnet32 - - This is a PCI card using the PCI version of AMD's LANCE chip. DMA - selection and chip numbering information can be found in ``AMD - LANCE''. - - - 4.16.3. DE-528 - - Status: Supported, Driver Name: ne, ne2k-pci (+8390) - - Apparently D-Link have also started making PCI NE2000 clones. - - - - 4.16.4. DE-530 - - Status: Supported, Driver Name: de4x5, tulip - - This is a generic DEC 21040 PCI chip implementation, and is reported - to work with the generic 21040 tulip driver. Note that this is NOT - the DFE-530. - - - See ``DEC 21040'' for more information on these cards, and the present - driver situation. - - - 4.16.5. DE-600 - - Status: Supported, Driver Name: de600 - - The DE600 is an old parallel port ethernet adaptor made for laptop - users etc. Expect about 180kb/s transfer speed from this device. You - should read the README.DLINK file in the kernel source tree. Note - that the device name that you pass to ifconfig is now eth0 and not the - previously used dl0. - - - 4.16.6. DE-620 - - Status: Supported, Driver Name: de620 - - Similar to the the DE-600, only with two output formats. See the - above information on the DE-600. - - - 4.16.7. DE-650 - - Status: Supported, Driver Name: pcnet_cs - - Some people have been using this PCMCIA card for some time now with - their notebooks. It is a basic 8390 design, much like a NE2000. The - LinkSys PCMCIA card and the IC-Card Ethernet are supposedly DE-650 - clones as well. - - - 4.16.8. DFE-530TX - - Status Supported, Driver Name: via-rhine - - Another card using the VIA Rhine chipset. Newer cards use the Rhine- - II. (see ``VIA Rhine'') Don't confuse this with the DE-530 which is a - tulip based card, or the DFE-530+ which is an 8139. - - - 4.16.9. DFE-530TX+, DFE-538TX - - Status Supported, Driver Name: 8139too, rtl8139(old) - - This card uses the RealTek 8139 chip - see the section ``RealTek - 8139''. - - - 4.16.10. DFE-550TX - - Status Supported, Driver Name: sundance - - - 4.16.11. DFE-570TX - - Status Supported, Driver Name: tulip - - This is a four port tulip (DS21143) card. - - - 4.16.12. DFE-580TX - - Status Supported, Driver Name: sundance - - 4.16.13. DGE-500T - - Status: Supported, Driver Name: ns83820 - - - 4.16.14. DGE-550T - - Status Supported, Driver Name: dl2k - - - 4.17. DFI - - - - 4.17.1. DFINET-300 and DFINET-400 - - Status: Supported, Driver Name: ne (+8390) - - Yet another poor NE clone card - these use `DFI' in the first 3 bytes - of the prom, instead of using 0x57 in bytes 14 and 15, which is what - all the NE1000 and NE2000 cards should use. (The 300 is an 8 bit - pseudo NE1000 clone, and the 400 is a pseudo NE2000 clone.) - - - - 4.18. Digital / DEC - - - - 4.18.1. DEPCA, DE100/1, DE200/1/2, DE210, DE422 - - Status: Supported, Driver Name: depca - - There is documentation included in the source file `depca.c', which - includes info on how to use more than one of these cards in a machine. - Note that the DE422 is an EISA card. These cards are all based on the - AMD LANCE chip. See ``AMD LANCE'' for more info. A maximum of two of - the ISA cards can be used, because they can only be set for 0x300 and - 0x200 base I/O address. If you are intending to do this, please read - the notes in the driver source file depca.c in the standard kernel - source tree. - - This driver will also work on Alpha CPU based machines, and there are - various ioctl()s that the user can play with. - - - 4.18.2. Digital EtherWorks 3 (DE203, DE204, DE205) - - Status: Supported, Driver Name: ewrk3 - - These cards use a proprietary chip from DEC, as opposed to the LANCE - chip used in the earlier cards like the DE200. These cards support - both shared memory or programmed I/O, although you take about a - 50%performance hit if you use PIO mode. The shared memory size can be - set to 2kB, 32kB or 64kB, but only 2 and 32 have been tested with this - driver. David says that the performance is virtually identical between - the 2kB and 32kB mode. There is more information (including using the - driver as a loadable module) at the top of the driver file ewrk3.c and - also in README.ewrk3. Both of these files come with the standard - kernel distribution. This driver has Alpha CPU support like depca.c - does. - - The standard driver has a number of interesting ioctl() calls that can - be used to get or clear packet statistics, read/write the EEPROM, - change the hardware address, and the like. Hackers can see the source - code for more info on that one. - David has also written a configuration utility for this card (along - the lines of the DOS program NICSETUP.EXE) along with other tools. - These can be found on most Linux FTP sites in the directory - /pub/Linux/system/Network/management -- look for the file ewrk3tools- - X.XX.tar.gz. - - - - 4.18.3. DE425 EISA, DE434, DE435, DE500 - - Status: Supported, Driver Name: de4x5, tulip - - These cards are based on the 21040 chip mentioned below. The DE500 - uses the 21140 chip to provide 10/100Mbs ethernet connections. Have a - read of the 21040 section below for extra info. There are also some - compile-time options available for non-DEC cards using this driver. - Have a look at README.de4x5 for details. - - All the Digital cards will autoprobe for their media (except, - temporarily, the DE500 due to a patent issue). - - This driver is also Alpha CPU ready and supports being loaded as a - module. Users can access the driver internals through ioctl() calls - - see the 'ewrk3' tools and the de4x5.c sources for information about - how to do this. - - - 4.18.4. DEC 21040, 21041, 2114x, Tulip - - Status: Supported, Driver Name: de4x5, tulip - - The DEC 21040 is a bus-mastering single chip ethernet solution from - Digital, similar to AMD's PCnet chip. The 21040 is specifically - designed for the PCI bus architecture. Apparently these chips are no - longer being produced, as Intel has bought the semiconductor portion - of DEC and is favouring their own ethernet chip(s). - - You have a choice of two drivers for cards based on this chip. There - is the DE425 driver discussed above, and the generic 21040 `tulip' - driver. - - Warning: Even though your card may be based upon this chip, the - drivers may not work for you. David C. Davies writes: - - ``There are no guarantees that either `tulip.c' OR `de4x5.c' will run - any DC2114x based card other than those they've been written to - support. WHY?? You ask. Because there is a register, the General - Purpose Register (CSR12) that (1) in the DC21140A is programmable by - each vendor and they all do it differently (2) in the DC21142/3 this - is now an SIA control register (a la DC21041). The only small ray of - hope is that we can decode the SROM to help set up the driver. - However, this is not a guaranteed solution since some vendors (e.g. - SMC 9332 card) don't follow the Digital Semiconductor recommended SROM - programming format." - - In non-technical terms, this means that if you aren't sure that an - unknown card with a DC2114x chip will work with the linux driver(s), - then make sure you can return the card to the place of purchase before - you pay for it. - - The 21041 chip is also found in place of the 21040 on most of the - later SMC EtherPower cards. The 21140 is for supporting 100Base-T and - works with the Linux drivers for the 21040 chip. To use David's de4x5 - driver with non-DEC cards, have a look at README.de4x5 for details. - - - If you are having trouble with the tulip driver, you can try the - newest version from Donald's ftp/WWW site. - - Tulip Driver - - There is also a (non-exhaustive) list of various cards/vendors that - use the 21040 chip. - - - 4.19. Farallon - - Farallon sells EtherWave adaptors and transceivers. This device allows - multiple 10baseT devices to be daisy-chained. - - - 4.19.1. Farallon Etherwave - - Status: Supported, Driver Name: 3c509 - - This is reported to be a 3c509 clone that includes the EtherWave - transceiver. People have used these successfully with Linux and the - present 3c509 driver. They are too expensive for general use, but are - a great option for special cases. Hublet prices start at $125, and - Etherwave adds $75-$100 to the price of the board -- worth it if you - have pulled one wire too few, but not if you are two network drops - short. - - - 4.19.2. Farallon PCI 593 - - Status: Supported, Driver Name: de4x5, tulip - - It has been reported that this card was detected with the de4x5 - driver. - - - 4.20. Fujitsu - - - Unlike many network chip manufacturers, Fujitsu have also made and - sold some network cards based upon their chip. - - - 4.20.1. Fujitsu FMV-181/182/183/184 - - Status: Supported, Driver Name: at1700, fmv18x(old) - - According to the driver, these cards are a straight forward Fujitsu - MB86965 implementation, which would make them very similar to the - Allied Telesis AT1700 cards. - - Older kernels used the driver fmv18x but support for these cards was - added to the at1700 driver and so the former has been phased out. - - - 4.21. Hewlett Packard - - - - 4.21.1. HP Night Director+ 10/100 - - - Status: Supported, Driver Name: pcnet32 - - Apparently these cards use the AMD 79C972 chip. - - 4.21.2. 27245A - - Status: Supported, Driver Name: hp (+8390) - - 8 bit 8390 based 10BaseT, not recommended for all the 8 bit reasons. - - - 4.21.3. HP EtherTwist, PC Lan+ (27247, 27248, 27252A, 27269B) - - Status: Supported, Driver Name: hp+ (+8390) - - The HP PC Lan+ is different to the standard HP PC Lan card. It can - be operated in either a PIO mode like a ne2000, or a shared memory - mode like a wd8013. - - - 4.21.4. HP-J2405A - - Status: Supported, Driver Name: lance - - These are lower priced, and slightly faster than the 27247/27252A, but - are missing some features, such as AUI, ThinLAN connectivity, and boot - PROM socket. This is a fairly generic LANCE design, but a minor - design decision makes it incompatible with a generic `NE2100' driver. - Special support for it (including reading the DMA channel from the - board) is included thanks to information provided by HP's Glenn - Talbott. - - - 4.21.5. HP-Vectra On Board Ethernet - - Status: Supported, Driver Name: lance - - The HP-Vectra has an AMD PCnet chip on the motherboard. DMA selection - and chip numbering information can be found in ``AMD LANCE''. - - - 4.21.6. HP 10/100 VG Any Lan Cards (27248B, J2573, J2577, J2585, - J970, J973) - - Status: Supported, Driver Name: hp100 - - This driver also supports some of the Compex VG products. Since the - driver supports ISA, EISA and PCI cards, it is found under ISA cards - when running make config on a kernel source. - - - 4.21.7. HP NetServer 10/100TX PCI (D5013A) - - Status: Supported, Driver Name: eepro100 - - Apparently these are just a rebadged Intel EtherExpress Pro 10/100B - card. See the Intel section for more information. - - - - 4.22. IBM / International Business Machines - - - - 4.22.1. IBM Thinkpad 300 - - Status: Obsolete, Driver Name: znet - - This is intel i82593 based. It has been declared obsolete in the 2.4 - series kernels. - 4.22.2. IBM Credit Card Adaptor for Ethernet - - Status: Semi-Supported, Driver Name: pcnet_cs - - - - 4.22.3. IBM 10/100 EtherJet PCI - - Status: Supported, Driver Name: eepro100 - - This card is reported to be compatible with the Intel EtherExpress Pro - 100 driver. - - - 4.22.4. IBM Token Ring - - Status: Semi-Supported, Driver Name: ibmtr - - To support token ring requires more than only writing a device driver, - it also requires writing the source routing routines for token ring. - It is the source routing that would be the most time comsuming to - write. - - Initial driver development was done with IBM ISA and MCA token ring - cards, and tested on an MCA 16/4 Megabit Token Ring board, but it - should work with other Tropic based boards. - - - 4.23. ICL Ethernet Cards - - - - 4.23.1. ICL EtherTeam 16i/32 - - Status: Supported, Driver Name: eth16i - - This driver supports both the ISA (16i) and EISA (32) versions of the - card. It uses the Fujitsu MB86965 chip that is also used on the - at1700 cards. - - - 4.24. Intel Ethernet Cards - - - Note that the naming of the various Intel cards is ambiguous and - confusing at best. If in doubt, then check the i8xxxx number on the - main chip on the card or for PCI cards, use the PCI information in the - /proc directory and then compare that to the numbers listed here. - Finally, there was a page at http://support.intel.com in the network - area that may also be some help if you don't know what card you have. - - - - 4.24.1. Ether Express - - Status: Supported, Driver Name: eexpress - - This card uses the intel i82586. Earlier versions of this driver (in - v1.2 kernels) were classed as alpha-test, as it didn't work well for - most people. The driver in the v2.0 kernel seems to work much better - for those who have tried it, although the driver source still lists it - as experimental and more problematic on faster machines. - - The comments at the top of the driver source list some of the problems - (and fixes!) associated with these cards. The slowdown hack of - replacing all the outb with outb_p in the driver has been reported to - avoid lockups for at least one user. Also check that the size of the - RAM buffer reported by the driver matches what the Intel configuration - utility reports. - - - 4.24.2. Ether Express PRO/10 (PRO/10+) - - Status: Supported, Driver Name: eepro - - Bao Chau Ha has written a driver for these cards that has been - included into early 1.3.x kernels. It may also work with some of the - Compaq built-in ethernet systems that are based on the i82595 chip. - You may have to use the configuration utility that came with the card - to disable PnP support where applicable. - - - 4.24.3. Ether Express PRO/10 PCI (EISA) - - Status: Semi-Supported, Driver Name: ? (distributed separately) - - There is a driver for the PCI version that is distributed separately - from the default kernel. These cards use the PLX9036 PCI interface - chip with the Intel i82596 LAN controller chip. If your card has the - i82557 chip, then you don't have this card, but rather the version - discussed next, and hence want the EEPro100 driver instead. - - You can get the alpha driver for the PRO/10 PCI card, along with - instructions on how to use it at: - - EEPro10 Driver - - If you have the EISA card, you will probably have to hack the driver a - bit to account for the different (PCI vs. EISA) detection mechanisms - that are used in each case. - - - - 4.24.4. Ether Express PRO 10/100B - - Status: Supported, Driver Name: e100, or eepro100 - - The e100 driver was supplied by intel, and the eepro100 driver is the - original driver by Donald. Note that the eepro100 driver will not - work with the older 100A cards. The chip numbers listed in the driver - are i82557, i82558, i82559, i82801, and about 25 other PCI IDs. For - driver updates and/or driver support, have a look at: - - EEPro-100B Page - - - 4.24.5. E1000 Gigabit - - Status: Supported, Driver Name: e1000 - - - 4.25. Kingston - - Kingston make various cards, including NE2000+, AMD PCnet based cards, - and DEC tulip based cards. Most of these cards should work fine with - their respective driver. See Kingston Web Page - - - - - 4.26. LinkSys - - LinkSys make a handful of different NE2000 clones, some straight ISA - cards, some ISA plug and play and some even ne2000-PCI clones based on - one of the supported ne2000-PCI chipsets. There are just too many - models to list here. Their site is at http://www.linksys.com/ - - - 4.26.1. LinkSys Etherfast 10/100 Cards. - - Status: Supported, Driver Name: tulip - - Note that with these cards there have been several `revisions' (i.e. - different chipset used) all with the same card name. The 1st used the - DEC chipset. The 2nd revision used the Lite-On PNIC 82c168 PCI Network - Interface Controller, the 3rd revision of the card uses a LinkSys - 82c169 NIC chip, and the 4th revision uses the ADMtek Comet. Support - for the latter three has been merged into the standard tulip driver -- - you may need a driver upgrade to get support for them depending on how - old your current driver version is. - - More PNIC information is available at: - - http://www.scyld.com/network - - More information on the various versions of these cards can be found - at the LinkSys WWW site mentioned above. - - - - 4.26.2. LinkSys Pocket Ethernet Adapter Plus (PEAEPP) - - Status: Supported, Driver Name: de620 - - This is supposedly a DE-620 clone, and is reported to work well with - that driver. See ``DE-620'' for more information. - - - 4.26.3. LinkSys PCMCIA Adaptor - - Status: Supported, Driver Name: pcnet_cs - - This is supposed to be a re-badged DE-650. - - - 4.27. Microdyne (Eagle) - - Eagle Technology (aka Novell cards) was sold to Microdyne. If you - can't find your card listed here, check the Novell section of this - document. While Microdyne are not actively selling network cards - anymore, there is still some stuff relating to their products on their - site at ftp.microdyne.com - - - 4.27.1. Microdyne Exos 205T - - Status: Semi-Supported, Driver Name: ? - - Another i82586 based card. Dirk Niggemann dirk-n@dircon.co.uk has - written a driver that he classes as ``pre-alpha'' that he would like - people to test. Mail him for more details. - - - - 4.28. Mylex - - - Mylex can be reached at the following numbers, in case anyone wants to - ask them anything. - - - MYLEX CORPORATION, Fremont - Sales: 800-77-MYLEX, (510) 796-6100 - FAX: (510) 745-8016. - - - - They also have a web site: Mylex WWW Site - - - 4.28.1. Mylex LNE390A, LNE390B - - Status: Supported, Driver Name: lne390 (+8390) - - These are fairly old EISA cards that make use of a shared memory - implementation similar to the wd80x3. A driver for these cards is - available in the current 2.1.x series of kernels. Ensure you set the - shared memory address below 1MB or above the highest address of the - physical RAM installed in the machine. - - - 4.28.2. Mylex LNP101 - - Status: Supported, Driver Name: de4x5, tulip - - This is a PCI card that is based on DEC's 21040 chip. It is - selectable between 10BaseT, 10Base2 and 10Base5 output. The LNP101 - card has been verified to work with the generic 21040 driver. - - See the section on the 21040 chip (``DEC 21040'') for more - information. - - - 4.28.3. Mylex LNP104 - - Status: Semi-Supported, Driver Name: de4x5, tulip - - The LNP104 uses the DEC 21050 chip to deliver four independent 10BaseT - ports. It should work with recent 21040 drivers that know how to share - IRQs, but nobody has reported trying it yet (that I am aware of). - - - 4.29. Myson - - - - 4.29.1. Myson MTD-8xx 10/100 PCI - - Status: Supported, Driver Name: fealnx - - Apparently cards sold under the name Surecom EP-320X-S also use this - Myson chip. - - - 4.30. National Semiconductor - - National Semiconductor really make chips, not cards. Other people - take their chips, solder them down to a bit of fibreglass with some - other cruft, put their name on it and sell it to you. - - 4.30.1. NS8390, DP8390, DP83905 etc. - - Status: Supported, Driver Name: 8390 - - The infamous 8390 chip. Found on a zillion ISA cards, and cloned by - various other chip manufacturers. Note that the file 8390.o is not a - complete driver in itself. It has to be used in conjunction with - another driver that knows how the 8390 is interfaced to the computer - bus. Examples of the 2nd half of the driver are wd.o, 3c503.o, smc- - ultra.o, ne2k-pci.o and so on. - - - 4.30.2. DP83800 with DP83840 - - Status: Not Supported. - - See the section for NE 10/100 below. - - - 4.30.3. DP83815/83816 - - - Status: Supported, Driver Name: natsemi - - http://www.scyld.com/network/natsemi.html - - This driver can be found in 2.4 and newer kernels. - - - 4.30.4. NS83820, DP83820 - - - Status: Supported, Driver Name: ns83820 - - The 83820 is a 10/100/1000 Mbps 64 bit PCI ethernet NIC, and the 83821 - is a 32 bit PCI part (but it appears that the parts are identical and - the EEPROM is supposed to set the data path width). Just like the - 8390, you won't usually see this number unless you look at the chip on - the card. - - - - 4.31. Novell Ethernet, NExxxx and associated clones. - - - The prefix `NE' came from Novell Ethernet. Novell followed the - cheapest NatSemi databook design and sold the manufacturing rights - (spun off?) Eagle, just to get reasonably-priced ethercards into the - market. (The now ubiquitous NE2000 card.) - - - 4.31.1. NE1000, NE2000 - - Status: Supported, Driver Name: ne (+8390) - - The ne2000 is now a generic name for a bare-bones design around the - NatSemi 8390 chip. They use programmed I/O rather than shared memory, - leading to easier installation but slightly lower performance and a - few problems. Some of the more common problems that arise with NE2000 - cards are listed in ``Problems with...'' - - Some NE2000 clones use the National Semiconductor `AT/LANTic' 83905 - chip, which offers a shared memory mode similar to the wd8013 and - EEPROM software configuration. The shared memory mode will offer less - CPU usage (i.e. more efficient) than the programmed I/O mode. - - In general it is not a good idea to put a NE2000 clone at I/O address - 0x300 because nearly every device driver probes there at boot. Some - poor NE2000 clones don't take kindly to being prodded in the wrong - areas, and will respond by locking your machine. Also 0x320 is bad - because SCSI drivers probe into 0x330. - - Donald has written a NE2000 diagnostic program (ne2k.c) for all ne2000 - cards. See ``Diagnostic Programs'' for more information. - - If you intend on using this driver as a loadable module you should - probably see ``Using the Ethernet Drivers as Modules'' for module - specific information. - - - 4.31.2. NE2000-PCI (RealTek/Winbond/Compex) - - Status: Supported, Driver Name: ne, ne2k-pci (+8390) - - Yes, believe it or not, people are making PCI cards based on the more - than ten year old interface design of the ne2000. At the moment nearly - all of these cards are based on the RealTek 8029 chip, or the Winbond - 89c940 chip. The Compex, KTI, VIA and Netvin cards apparently also use - these chips, but have a different PCI ID. - - The latest v2.0 kernel has support to automatically detect all these - cards and use them. (If you are using a kernel v2.0.34 or older, you - should upgrade to ensure your card will be detected.) There are now - two drivers to choose from; the original ISA/PCI ne.c driver, and a - relatively new PCI-only ne2k-pci.c driver. - - To use the original ISA/PCI driver you have to say `Y' to the `Other - ISA cards' option when running make config as you are actually using - the same NE2000 driver as the ISA cards use. (That should also give - you a hint that these cards aren't anywhere as intelligent as say a - PCNet-PCI or DEC 21040 card...) - - The newer PCI-only driver differs from the ISA/PCI driver in that all - the support for old NE1000 8 bit cards has been removed and that data - is moved to/from the card in bigger blocks, without any intervening - pauses that the older ISA-NE2000's required for reliable operation. - The result is a driver that is slightly smaller and slightly more - efficient, but don't get too excited as the difference will not be - obvious under normal use. (If you really wanted maximum - efficiency/low CPU use, then a PCI-NE2000 is simply a very poor - choice.) Driver updates and more information can be found at: - - http://www.scyld.com/network - - If you have a NE2000 PCI card that is not detected by the most - current version of the driver, please contact the maintainer of the - NE2000 driver as listed in /usr/src/linux/MAINTAINERS along with the - output from a cat /proc/pci and dmesg so that support for your card - can also be added to the driver. - - Also note that various card makers have been known to put `NE2000 - Compatible' stickers on their product boxes even when it is completely - different (e.g. PCNet-PCI or RealTek 8139). If in doubt check the - main chip number against this document. - - - 4.31.3. NE-10/100 - - Status: Not Supported. - - These are ISA 100Mbps cards based on the National Semiconductor - DP83800 and DP83840 chips. There is currently no driver support, nor - has anyone reported that they are working on a driver. Apparently - documentation on the chip is unavailable with the exception of a - single PDF file that doesn't give enough details for a driver. - - - 4.31.4. NE1500, NE2100 - - Status: Supported, Driver Name: lance - - These cards use the original 7990 LANCE chip from AMD and are - supported using the Linux lance driver. Newer NE2100 clones use the - updated PCnet/ISA chip from AMD. - - Some earlier versions of the lance driver had problems with getting - the IRQ line via autoIRQ from the original Novell/Eagle 7990 cards. - Hopefully this is now fixed. If not, then specify the IRQ via LILO, - and let us know that it still has problems. - - DMA selection and chip numbering information can be found in ``AMD - LANCE''. - - - 4.31.5. NE/2 MCA - - Status: Semi-Supported, Driver Name: ne2 - - There were a few NE2000 microchannel cards made by various companies. - This driver, available in v2.2 kernels, will detect the following MCA - cards: Novell Ethernet Adapter NE/2, Compex ENET-16 MC/P, and the Arco - Ethernet Adapter AE/2. - - - 4.31.6. NE3200 - - Status: Not Supported. - - While there is no driver support in the current 2.4 kernel, Rask - Ingemann Lambertsen has been playing around with an old EISA machine - and had an experimental driver at: - http://vip.cybercity.dk/~ccc94453/linux/ne3200/ - - - 4.31.7. NE3210 - - Status: Supported, Driver Name: ne3210 (+8390) - - This EISA card is completely different from the NE3200, as it uses a - Nat Semi 8390 chip. The driver can be found in the v2.2 kernel source - tree. Ensure you set the shared memory address below 1MB or above the - highest address of the physical RAM installed in the machine. - - - 4.31.8. NE4100 - - Status: Supported, Driver Name: pcnet_cs - - - 4.31.9. NE5500 - - Status: Supported, Driver Name: pcnet32 - - These are just AMD PCnet-PCI cards ('970A) chips. More information on - LANCE/PCnet based cards can be found in ``AMD LANCE''. - - - - 4.32. Netgear - - - - 4.32.1. Netgear FA-311 - - Status: Supported, Driver Name: natsemi - - - 4.32.2. Netgear GA-620 - - Status: Supported, Driver Name: acenic - - - 4.32.3. Netgear GA-621 - - Status: Supported, Driver Name: ns83820 - - - 4.33. Proteon - - - - 4.33.1. Proteon P1370-EA - - Status: Supported, Driver Name: ne (+8390) - - Apparently this is a NE2000 clone, and works fine with Linux. - - - 4.33.2. Proteon P1670-EA - - Status: Supported, Driver Name: de4x5, tulip - - This is yet another PCI card that is based on DEC's Tulip chip. It - has been reported to work fine with Linux. - - See the section on the 21040 chip (``DEC 21040'') for more driver - information. - - - - 4.34. Pure Data - - - - 4.34.1. PDUC8028, PDI8023 - - Status: Supported, Driver Name: wd (+8390) - - The PureData PDUC8028 and PDI8023 series of cards are `almost clones' - of the wd80x3 cards - there is special code in the wd.c driver to - probe for these cards. - - - 4.35. Racal-Interlan - - - Racal Interlan can be reached via WWW at www.interlan.com. I believe - they were also known as MiCom-Interlan at one point in the past. - - - 4.35.1. ES3210 - - Status: Semi-Supported, Driver Name: es3210 - - This is an EISA 8390 based shared memory card. An experimetal driver - is shipped with v2.2 kernels and it is reported to work fine, but the - EISA IRQ and shared memory address detection appears not to work with - (at least) the early revision cards. (This problem is not unique to - the Linux world either...) In that case, you have to supply them to - the driver. For example, card at IRQ 5 and shared memory 0xd0000, - with a modular driver, add options es3210 irq=5 mem=0xd0000 to - /etc/modules.conf. Or with the driver compiled into the kernel, - supply at boot ether=5,0,0xd0000,eth0 The I/O base is automatically - detected and hence a value of zero should be used. - - - 4.35.2. NI5010 - - Status: Semi-Supported, Driver Name: ni5010 - - You used to have to go get the driver for these old 8 bit MiCom- - Interlan cards separately, but now it is shipped with the v2.2 kernels - as an experimental driver. - - - 4.35.3. NI5210 - - Status: Semi-Supported, Driver Name: ni52 - - This card also uses one of the Intel chips. Michael Hipp has written - a driver for this card. It is included in the standard kernel as an - `alpha' driver. Michael would like to hear feedback from users that - have this card. See ``Alpha Drivers'' for important information on - using alpha-test ethernet drivers with Linux. - - - 4.35.4. NI6510 (not EB) - - Status: Semi-Supported, Driver Name: ni65 - - There is also a driver for the LANCE based NI6510, and it is also - written by Michael Hipp. Again, it is also an `alpha' driver. For some - reason, this card is not compatible with the generic LANCE driver. See - ``Alpha Drivers'' for important information on using alpha-test - ethernet drivers with Linux. - - - 4.35.5. EtherBlaster (aka NI6510EB) - - Status: Supported, Driver Name: lance - - As of kernel 1.3.23, the generic LANCE driver had a check added to it - for the 0x52, 0x44 NI6510EB specific signature. Others have reported - that this signature is not the same for all NI6510EB cards however, - which will cause the lance driver to not detect your card. If this - happens to you, you can change the probe (at about line 322 in - lance.c) to printk() out what the values are for your card and then - use them instead of the 0x52, 0x44 defaults. - - The cards should probably be run in `high-performance' mode and not in - the NI6510 compatible mode when using the lance driver. - - - - 4.36. RealTek - - - - 4.36.1. RealTek RTL8002/8012 (AT-Lan-Tec) Pocket adaptor - - Status: Supported, Driver Name: atp - - This is a generic, low-cost OEM pocket adaptor being sold by AT-Lan- - Tec, and (likely) a number of other suppliers. A driver for it is - included in the standard kernel. Note that there is substantial - information contained in the driver source file `atp.c'. - - Note that the device name that you pass to ifconfig was not eth0 but - atp0 for earlier versions of this driver. - - - 4.36.2. RealTek 8008 - - Status: Supported, Driver Name: ne, wd (+8390) - - This chip has been reported to behave similar to the AT/LANTIC in that - it can be set for ne/PIO or wd/MMIO modes of operation via the vendor - supplied software (SET8008R). - - - 4.36.3. RealTek 8009 - - Status: Supported, Driver Name: ne (+8390) - - This is an ISA NE2000 clone, and is reported to work fine with the - linux NE2000 driver. The rset8009.exe program can be obtained from - RealTek's WWW site at http://www.realtek.com.tw - or via ftp from the - same site. - - - 4.36.4. RealTek 8019 - - Status: Supported, Driver Name: ne (+8390) - - This is a Plug and Pray version of the above. Use the DOS software to - disable PnP and enable jumperless configuration; set the card to a - sensible I/O address and IRQ and you should be ready to go. (If using - the driver as a module, don't forget to add an io=0xNNN option to - /etc/modules.conf). The rset8019.exe program can be obtained from - RealTek's WWW site at http://www.realtek.com.tw - or via ftp from the - same site. - - - 4.36.5. RealTek 8029 - - Status: Supported, Driver Name: ne, ne2k-pci (+8390) - - This is a PCI single chip implementation of a NE2000 clone. Various - vendors are now selling cards with this chip. See ``NE2000-PCI'' for - information on using any of these cards. Note that this is still a - 10+ year old design just glued onto a PCI bus. Performance won't be - staggeringly better than the equivalent ISA model. - - - - 4.36.6. RealTek 8129/8139 - - Status: Supported, Driver Name: 8139too, rtl8139(old) - - Another PCI single chip ethernet solution from RealTek. A driver for - cards based upon this chip was included in the v2.0.34 release of - linux. The driver is called 8139too in recent kernels. - - - In older kernels, the driver was called rtl8139 and you generally had - to to answer `Y' when asked if you want experimental drivers to get - access to this driver. - - - 4.37. Sager - - - - 4.37.1. Sager NP943 - - Status: Semi-Supported, Driver Name: 3c501 - - This is just a 3c501 clone, with a different S.A. PROM prefix. I - assume it is equally as brain dead as the original 3c501 as well. The - driver checks for the NP943 I.D. and then just treats it as a 3c501 - after that. See ``3Com 3c501'' for all the reasons as to why you - really don't want to use one of these cards. - - - 4.38. Schneider & Koch - - - - 4.38.1. SK G16 - - Status: Obsolete, Driver Name: sk_g16 - - This driver was included into the v1.1 kernels, and it was written by - PJD Weichmann and SWS Bern. It appears that the SK G16 is similar to - the NI6510, in that it is based on the first edition LANCE chip (the - 7990). Once again, it appears as though this card won't work with the - generic LANCE driver. - - It was marked obsolete as of the 2.4 series kernels. - - - 4.39. SEEQ - - - - 4.39.1. SEEQ 8005 - - Status: Obsolete, Driver Name: seeq8005 - - There is little information about the card included in the driver, and - hence little information to be put here. If you have a question, you - are probably best trying to e-mail the driver author as listed in the - source. - - It was marked obsolete as of the 2.4 series kernels. - - - 4.40. SiS (Silicon Integrated Systems) - - - SiS have long been in the business of making motherboard chipsets even - back in the 386 days. Now they also have some ethernet chips that are - quite common as well. - - - 4.40.1. SiS 900 (7016, 630E, 962) - - Status: Supported, Driver Name: sis900 - - - This device can be found as a standalone PCI card, or as built-in on - the motherboard. The driver has been present since late 2.2 kernels. - - - 4.41. SMC (Standard Microsystems Corp.) - - - - The ethernet part of Western Digital was bought out by SMC many years - ago when the wd8003 and wd8013 were the main product. Since then SMC - has continued making 8390 based ISA cards (Elite16, Ultra, EtherEZ) - and also added several PCI products to their range. - - Contact information for SMC: - - SMC / Standard Microsystems Corp., 80 Arkay Drive, Hauppage, New York, - 11788, USA. Technical Support via phone: 800-992-4762 (USA) or - 800-433-5345 (Canada) or 516-435-6250 (Other Countries). Literature - requests: 800-SMC-4-YOU (USA) or 800-833-4-SMC (Canada) or - 516-435-6255 (Other Countries). Technical Support via E-mail: - techsupt@ccmail.west.smc.com. FTP Site: ftp.smc.com. WWW Site: SMC - . - - - 4.41.1. WD8003, SMC Elite - - Status: Supported, Driver Name: wd (+8390) - - These are the 8-bit versions of the card. The 8 bit 8003 is slightly - less expensive, but only worth the savings for light use. Note that - some of the non-EEPROM cards (clones with jumpers, or old old old - wd8003 cards) have no way of reporting the IRQ line used. In this - case, auto-irq is used, and if that fails, the driver silently assings - IRQ 5. You can get the SMC setup/driver disks from SMC's ftp site. - Note that some of the newer SMC `SuperDisk' programs will fail to - detect the real old EEPROM-less cards. The file SMCDSK46.EXE seems to - be a good all-round choice. Also the jumper settings for all their - cards are in an ASCII text file in the aforementioned archive. The - latest (greatest?) version can be obtained from ftp.smc.com. - - As these are basically the same as their 16 bit counterparts (WD8013 / - SMC Elite16), you should see the next section for more information. - - - - 4.41.2. WD8013, SMC Elite16 - - Status: Supported, Driver Name: wd (+8390) - - Over the years the design has added more registers and an EEPROM. (The - first wd8003 cards appeared about ten years ago!) Clones usually go - by the `8013' name, and usually use a non-EEPROM (jumpered) design. - Late model SMC cards will have the SMC 83c690 chip instead of the - original Nat Semi DP8390 found on earlier cards. The shared memory - design makes the cards a bit faster than PIO cards, especially with - larger packets. More importantly, from the driver's point of view, it - avoids a few bugs in the programmed-I/O mode of the 8390, allows safe - multi-threaded access to the packet buffer, and it doesn't have a - programmed-I/O data register that hangs your machine during warm-boot - probes. - - Non-EEPROM cards that can't just read the selected IRQ will attempt - auto-irq, and if that fails, they will silently assign IRQ 10. (8 bit - versions will assign IRQ 5) - - - Cards with a non standard amount of memory on board can have the - memory size specified at boot (or as an option in /etc/modules.conf if - using modules). The standard memory size is 8kB for an 8bit card and - 16kB for a 16bit card. For example, the older WD8003EBT cards could - be jumpered for 32kB memory. To make full use of that RAM, you would - use something like (for I/O=0x280 and IRQ 9): - - ______________________________________________________________________ - LILO: linux ether=9,0x280,0xd0000,0xd8000,eth0 - ______________________________________________________________________ - - - - Also see ``8013 problems'' for some of the more common problems and - frequently asked questions that pop up often. - - If you intend on using this driver as a loadable module you should - probably see ``Using the Ethernet Drivers as Modules'' for module - specific information. - - - 4.41.3. SMC Elite Ultra - - Status: Supported, Driver Name: smc-ultra (+8390) - - This ethercard is based on the 83c790 chip from SMC, which has a few - new features over the 83c690. While it has a mode that is similar to - the older SMC ethercards, it's not entirely compatible with the old - WD80*3 drivers. However, in this mode it shares most of its code with - the other 8390 drivers, while operating slightly faster than a WD8013 - clone. - - Since part of the Ultra looks like an 8013, the Ultra probe is - supposed to find an Ultra before the wd8013 probe has a chance to - mistakenly identify it. - - Donald mentioned that it is possible to write a separate driver for - the Ultra's `Altego' mode which allows chaining transmits at the cost - of inefficient use of receive buffers, but that will probably not - happen. - - Bus-Master SCSI host adaptor users take note: In the manual that ships - with Interactive UNIX, it mentions that a bug in the SMC Ultra will - cause data corruption with SCSI disks being run from an aha-154X host - adaptor. This will probably bite aha-154X compatible cards, such as - the BusLogic boards, and the AMI-FastDisk SCSI host adaptors as well. - - SMC has acknowledged the problem occurs with Interactive, and older - Windows NT drivers. It is a hardware conflict with early revisions of - the card that can be worked around in the driver design. The current - Ultra driver protects against this by only enabling the shared memory - during data transfers with the card. Make sure your kernel version is - at least 1.1.84, or that the driver version reported at boot is at - least smc-ultra.c:v1.12 otherwise you are vulnerable. - - If you intend on using this driver as a loadable module you should - probably see ``Using the Ethernet Drivers as Modules'' for module - specific information. - - - 4.41.4. SMC Elite Ultra32 EISA - - Status: Supported, Driver Name: smc-ultra32 (+8390) - - This EISA card shares a lot in common with its ISA counterpart. A - working (and stable) driver is included in both v2.0 and v2.2 kernels. - Thanks go to Leonard Zubkoff for purchasing some of these cards so - that linux support could be added for them. - - - 4.41.5. SMC EtherEZ (8416) - - Status: Supported, Driver Name: smc-ultra (+8390) - - This card uses SMC's 83c795 chip and supports the Plug 'n Play - specification. It also has an SMC Ultra compatible mode, which allows - it to be used with the Linux Ultra driver. For best results, use the - SMC supplied program (avail. from their www/ftp site) to disable PnP - and configure it for shared memory mode. See the above information - for notes on the Ultra driver. - - For v1.2 kernels, the card had to be configured for shared memory - operation. However v2.0 kernels can use the card in shared memory or - programmed I/O mode. Shared memory mode will be slightly faster, and - use less CPU resources as well. - - - 4.41.6. SMC EtherPower PCI (8432) - - Status: Supported, Driver Name: de4x5, tulip - - NB: The EtherPower II is an entirely different card. See below! These - cards are a basic DEC 21040 implementation, i.e. one big chip and a - couple of transceivers. Donald has used one of these cards for his - development of the generic 21040 driver (aka tulip.c). Thanks to Duke - Kamstra, once again, for supplying a card to do development on. - - Some of the later revisons of this card use the newer DEC 21041 chip, - which may cause problems with older versions of the tulip driver. If - you have problems, make sure you are using the latest driver release, - which may not yet be included in the current kernel source tree. - - See ``DEC 21040'' for more details on using one of these cards, and - the current status of the driver. - - Apparently, the latest revision of the card, the EtherPower-II uses - the 9432 chip. It is unclear at the moment if this one will work with - the present driver. As always, if unsure, check that you can return - the card if it doesn't work with the linux driver before paying for - the card. - - - 4.41.7. SMC EtherPower II PCI (9432) - - Status: Semi-Supported, Driver Name: epic100 - - These cards, based upon the SMC 83c170 chip, are entirely different - than the Tulip based cards. A new driver has been included in kernels - v2.0 and v2.2 to support these cards. For more details, see: - - http://www.scyld.com/network - - - - 4.41.8. SMC 1211TX 10/100 - - Status: Semi-Supported, Driver Name: 8139too, rtl8139(old) - - Apparently SMC is no longer the same company that brought you cards - like the Ultra and the EPIC. The chip design part is now called SMSC - and you will see the SMC name stuck on low end OEM boards like this - one - a RealTek 8139 with a modified EEPROM. - 4.41.9. SMC 3008 - - Status: Not Supported. - - These 8 bit cards are based on the Fujitsu MB86950, which is an - ancient version of the MB86965 used in the Linux at1700 driver. Russ - says that you could probably hack up a driver by looking at the - at1700.c code and his DOS packet driver for the Tiara card - (tiara.asm). They are not very common. - - - 4.41.10. SMC 3016 - - Status: Not Supported. - - These are 16bit I/O mapped 8390 cards, much similar to a generic - NE2000 card. If you can get the specifications from SMC, then porting - the NE2000 driver would probably be quite easy. They are not very - common. - - - 4.41.11. SMC-9000 / SMC 91c92/4 - - Status: Supported, Driver Name: smc9194 - - The SMC9000 is a VLB card based on the 91c92 chip. The 91c92 appears - on a few other brand cards as well, but is fairly uncommon. - - - 4.41.12. SMC 91c100 - - Status: Semi-Supported, Driver Name: smc9194 - - The SMC 91c92 driver is supposed to work for cards based on this - 100Base-T chip, but at the moment this is unverified. - - - 4.41.13. SMC 9452TX/9462TX - - Status: Supported, Driver Name: ns83820 - - - 4.42. Sundance - - - - 4.42.1. Sundance ST201, Alta - - Status: Supported, Driver Name: sundance - - The Sundance Alta chip is used on OEM boards. It uses bus-master - transfers, can transmit from and receive into arbitrarily aligned - buffers, and has a 64 element multicast hash. All chip versions have - flow control and ACPI power states. - - - 4.43. SysKonnect - - - - 4.43.1. SysKonnect sk-98xx Gigabit Ethernet - - Status: Supported, Driver Name: sk98 - - Early reports indicated that this chipset had a problem with Tx - checksums, which hurts performance a little. - 4.44. Texas Instruments - - - - 4.44.1. ThunderLAN - - Status: Supported, Driver Name: tlan - - This driver covers many Compaq built-in ethernet devices, including - the NetFlex and Netelligent groups. It also supports the Olicom 2183, - 2185, 2325 and 2326 products. - - - 4.45. Thomas Conrad - - - - 4.45.1. Thomas Conrad TC-5048 - - - This is yet another PCI card that is based on DEC's 21040 chip. - - See the section on the 21040 chip (``DEC 21040'') for more - information. - - - 4.46. VIA - - - You probably won't see a VIA networking card, as VIA make several - networking chips that are then used by others in the construction of - an ethernet card. They have a WWW site at: - - http://www.via.com.tw/ - - - 4.46.1. VIA 86C926 Amazon - - Status: Supported, Driver Name: ne, ne2k-pci (+8390) - - This controller chip is VIA's PCI-NE2000 offering. You can choose - between the ISA/PCI ne.c driver or the PCI-only ne2k-pci.c driver. See - the PCI-NE2000 section for more details. - - - 4.46.2. VIA 86C100A Rhine II (and 3043 Rhine I) - - Status Supported, Driver Name: via-rhine - - This relatively new driver can be found in current 2.0 and 2.1 - kernels. It is an improvement over the 86C926 NE2000 chip in that it - supports bus master transfers, but strict 32 bit buffer alignment - requirements limit the benefit gained from this. For more details and - driver updates, see: - - http://www.scyld.com/network - - - - 4.47. Western Digital - - - Please see ``SMC'' for information on SMC cards. (SMC bought out - Western Digital's network card section many years ago.) - - - 4.48. Winbond - - Winbond don't really make and sell complete cards to the general - public -- instead they make single chip ethernet solutions that other - companies buy, stick onto a PCI board with their own name and then - sell through retail stores. Some setup programs and tech support is - available at: - - http://www.winbond.com.tw - - - 4.48.1. Winbond 89c840 - - Status: Supported, Driver Name: winbond-840 - - This chip has been described as `the mutant spawn of a NE2000 and a - Tulip clone' -- see the driver notes for more details. This driver - also supports the TX9882 chip found on the Compex RL100-ATX. - - - 4.48.2. Winbond 89c904, 89c905, 89c906 - - Status: Supported, Driver Name: ne (+8390) - - These are Winbond's ISA 10Mbps ne2000 compatible ethernet chips. Setup - programs are available at the Winbond site. - - - 4.48.3. Winbond 89c940 - - Status: Supported, Driver Name: ne, ne2k-pci (+8390) - - This chip is one of the two commonly found on the low price PCI ne2000 - cards sold by lots of manufacturers. Note that this is still a 10+ - year old design just glued onto a PCI bus. Performance won't be - staggeringly better than the equivalent ISA model. - - - 4.49. Xircom - - - For the longest time, Xircom wouldn't release the programming - information required to write a driver, unless you signed your life - away. Apparently enough linux users have pestered them for driver - support (they claim to support all popular networking operating - systems...) so that they have changed their policy to allow - documentation to be released without having to sign a non-disclosure - agreement. Some people have said they they will release the source - code to the SCO driver, while others have been told that they are no - longer providing information on `obsolete' products like the earlier - PE models. If you are interested and want to check into this - yourself, you can reach Xircom at 1-800-874-7875, 1-800-438-4526 or - +1-818-878-7600. - - - 4.49.1. Xircom PE1, PE2, PE3-10B* - - Status: Not Supported. - - Not to get your hopes up, but if you have one of these parallel port - adaptors, you may be able to use it in the DOS emulator with the - Xircom-supplied DOS drivers. You will have to allow DOSEMU access to - your parallel port, and will probably have to play with SIG (DOSEMU's - Silly Interrupt Generator). - - - 4.49.2. Xircom CE, CEM, CE2, CE3 - - - Status: Supported, Driver Name: xirc2ps_cs - - According to the driver, this supports the CE2, CE IIps, RE-10, CEM28, - CEM33, CE33, CEM56, CE3-100, CE3B, RE-100, REM10BT, and the - REM56G-100. - - - 4.49.3. Xircom CBE-100 - - Status: Supported, Driver Name: xircom_tulip_cb - - A tulip-like implementation on CardBus. - - - - 4.50. Zenith - - - - 4.50.1. Z-Note - - Status: Obsolete, Driver Name: znet - - The built-in Z-Note network adaptor is based on the Intel i82593 using - two DMA channels. Also note that the IBM ThinkPad 300 is compatible - with the Z-Note. - - - 4.51. Znyx - - - - 4.51.1. Znyx ZX342 (DEC 21040 based) - - Status: Supported, Driver Name: de4x5, tulip - - You have a choice of two drivers for cards based on this chip. There - is the DE425 driver written by David, and the generic 21040 driver - that Donald has written. - - Note that as of 1.1.91, David has added a compile time option that may - allow non-DEC cards (such as the Znyx cards) to work with this driver. - Have a look at README.de4x5 for details. - - See ``DEC 21040'' for more information on these cards, and the present - driver situation. - - - 4.52. Identifying an Unknown Card - - - Okay, so your uncle's cousin's neighbour's friend had a brother who - found an old ISA ethernet card in the AT case he was using as a cage - for his son's pet hampster. Somehow you ended up with the card and - want to try and use it with linux, but nobody has a clue what the card - is and there isn't any documentation. - - First of all, look for any obvious model numbers that might give a - clue. Any model number that contains 2000 will most likely be a NE2000 - clone. Any cards with 8003 or 8013 on them somewhere will be - Western/Digital WD80x3 cards or SMC Elite cards or clones of them. - - - 4.52.1. Identifying the Network Interface Controller - - Look for the biggest chip on the card. This will be the network - controller (NIC) itself, and most can be identified by the part - number. If you know which NIC is on the card, the following might be - able to help you figure out what card it is. - - Probably the most common ISA NIC is the National Semiconductor DP8390 - aka NS32490 aka DP83901 aka DP83902 aka DP83905 aka DP83907. And - those are just the ones made by National! Other companies such as - Winbond and UMC make DP8390 and DP83905 clone parts, such as the - Winbond 89c904 (DP83905 clone) and the UMC 9090. If the card has some - form of 8390 on it, then chances are it is a ne1000 or ne2000 clone - card. The second most common 8390 based card are wd80x3 cards and - clones. Cards with a DP83905 can be configured to be an ne2000 or a - wd8013. Never versions of the genuine wd80x3 and SMC Elite cards have - an 83c690 in place of the original DP8390. The SMC Ultra cards have an - 83c790, and use a slightly different driver than the wd80x3 cards. - The SMC EtherEZ cards have an 83c795, and use the same driver as the - SMC Ultra. All BNC cards based on some sort of 8390 or 8390 clone will - usually have an 8392 (or 83c692, or ???392) 16 pin DIP chip very close - to the BNC connector. - - Another common NIC found on older cards is the Intel i82586. Cards - having this NIC include the 3c505, 3c507, 3c523, Intel EtherExpress- - ISA, Microdyne Exos-205T, and the Racal-Interlan NI5210. - - The original AMD LANCE NIC was numbered AM7990, and newer revisions - include the 79c960, 79c961, 79c965, 79c970, and 79c974. Most cards - with one of the above will work with the Linux LANCE driver, with the - exception of the old Racal-Interlan NI6510 cards that have their own - driver. - - Newer PCI cards having a DEC 21040, 21041, 21140, or similar number on - the NIC should be able to use the linux tulip or de4x5 driver. - - Other PCI cards having a big chip marked RTL8029 or 89C940 or 86C926 - are ne2000 clone cards, and the ne2k-pci driver should automatically - detect these cards. - - - 4.52.2. Identifying the Ethernet Address - - - Each ethernet card has its own six byte address that is unique to that - card. The first three bytes of that address are the same for each card - made by that particular manufacturer. For example all SMC cards start - with 00:00:c0. The last three are assigned by the manufacturer - uniquely to each individual card as they are produced. - - If your card has a sticker on it giving all six bits of its address, - you can look up the vendor from the first three. However it is more - common to see only the last three bytes printed onto a sticker - attached to a socketed PROM, which tells you nothing. - - You can determine which vendors have which assigned addresses from - RFC-1340. Apparently there is a more up to date listing available in - various places as well. Try a WWW or FTP search for EtherNet-codes or - Ethernet-codes and you will find something. - - - 4.52.3. Identifying the Card by the FCC ID Number - - - As part of the certification process a card typically has to pass - before being sold to the user, it gets tested by the FCC, and from - this gets a FCC ID which is supposed to be printed on the card - somewhere. For example, a card has on it FCC ID: J158013EWC - and this - card happens to be a SMC/WD8013-EWC. Some web sites like - www.driverguide.com and drdriver.com make use of listings of FCC IDs - that may help with less obvious ID numbers. The FCC itself has a - search tool that may also help, and it is at: - - FCC IDs < http://www.fcc.gov/oet/fccid> - - - 4.52.4. Tips on Trying to Use an Unknown Card - - - If you are still not sure what the card is, but have at least narrowed - it down some, then you can build a kernel with a whole bunch of - drivers included, and see if any of them autodetect the card at boot. - - If the kernel doesn't detect the card, it may be that the card is not - configured to one of the addresses that the driver probes when looking - for a card. In this case, you might want to try getting - scanport.tar.gz from your local linux ftp site, and see if that can - locate where your card is jumpered for. It scans ISA I/O space from - 0x100 to 0x3ff looking for devices that aren't registered in - /proc/ioports. If it finds an unknown device starting at some - particular address, you can then explicity point the ethernet probes - at that address with an ether= boot argument. - - If you manage to get the card detected, you can then usually figure - out the unknown jumpers by changing them one at a time and seeing at - what I/O base and IRQ that the card is detected at. The IRQ settings - can also usually be determined by following the traces on the back of - the card to where the jumpers are soldered through. Counting the `gold - fingers' on the backside, from the end of the card with the metal - bracket, you have IRQ 9, 7, 6, 5, 4, 3, 10, 11, 12, 15, 14 at fingers - 4, 21, 22, 23, 24, 25, 34, 35, 36, 37, 38 respectively. Eight bit - cards only have up to finger 31. - - Jumpers that appear to do nothing usually are for selecting the memory - address of an optional boot ROM. Other jumpers that are located near - the BNC or RJ-45 or AUI connectors are usually to select the output - media. These are also typically near the `black box' voltage - converters marked YCL, Valor, or Fil-Mag. - - A nice collection of jumper settings for various cards can be found at - the following URL: - - Ethercard Settings - - - - 4.53. Drivers for Non-Ethernet Devices - - - There are a few other drivers that are in the linux source that - present an ethernet-like device to network programs, while not really - being ethernet. These are briefly listed here for completeness. - - dummy.c - The purpose of this driver is to provide a device to point a - route through, but not to actually transmit packets. - - eql.c - Load Equalizer, enslaves multiple devices (usually modems) and - balances the Tx load across them while presenting a single device to - the network programs. - - ibmtr.c - IBM Token Ring, which is not really ethernet. Broken-Ring - requires source routing and other uglies. - loopback.c - Loopback device, for which all packets from your machine - and destined for your own machine go. It essentially just moves the - packet off the Tx queue and onto the Rx queue. - - pi2.c - Ottawa Amateur Radio Club PI and PI2 interface. - - plip.c - Parallel Line Internet Protocol, allows two computers to send - packets to each other over two joined parallel ports in a point-to- - point fashion. - - ppp.c - Point-to-Point Protocol (RFC1331, 1548. 1661), for the - Transmission of Multi-protocol Datagrams over a Point-to-Point Link - (again usually modems). - - slip.c - Serial Line Internet Protocol, allows two computers to send - packets to each other over two joined serial ports (usually via - modems) in a point-to-point fashion. - - tunnel.c - Provides an IP tunnel through which you can tunnel network - traffic transparently across subnets - - wavelan.c - An Ethernet-like radio transceiver controlled by the Intel - 82586 coprocessor which is used on other ethercards such as the Intel - EtherExpress. - - - 5. Cables, Coax, Twisted Pair - - If you are starting a network from scratch, you will probably be using - Cat5 wire for 10/100baseT (twisted pair telco-style cables with RJ-45 - eight wire `phone' connectors). If you stumble across some old - surplus 10Base2 thin ethernet (RG58 co-ax cable with BNC connectors) - it might be suitable for linking a few machines together in a home - ethernet. The old-fashioned thick ethernet, RG5 or RG8 cable with N - connectors is really obsolete and rarely seen anymore. - - See ``Type of cable...'' for an introductory look at cables. Also - note that the FAQ from comp.dcom.lans.ethernet has a lot of useful - information on cables and such. FTP to rtfm.mit.edu and look in - /pub/usenet-by-hierarchy/ for the FAQ for that newsgroup. - - - 5.1. Thin Ethernet (thinnet) - - - - Thinnet (10Base-2) is pretty much obsolete now. It is fine for - somebody playing around with a home network and old ISA cards. There - are two main drawbacks to using thinnet. The first is that it is - limited to 10Mb/sec - 100Mb/sec requires twisted pair. The second - drawback is that if you have a big loop of machines connected - together, and some bonehead breaks the loop by taking one cable off - the side of his tee, the whole network goes down because it sees an - infinite impedance (open circuit) instead of the required 50 ohm - termination. Note that you can remove the tee piece from the card - itself without killing the whole subnet, as long as you don't remove - the cables from the tee itself. And if you are doing a small network - of two machines, you still need the tees and the 50 ohm terminators -- - you can't just cable them together! It is also vital that your cable - have no `stubs' -- the `T' connectors must be attached directly to the - ethercards. - - - - 5.2. Twisted Pair - - - Twisted pair networks require active hubs, which start around $50. - You can pretty much ignore claims that you can use your existing - telephone wiring as it is a rare installation where that turns out to - be the case. - - On the other hand, all 100Mb/sec ethernet proposals use twisted pair, - and most new business installations use twisted pair. The wiring - should be listed as Category 5. Anything less than Cat 5 is useless. - - If you are only connecting two machines, it is possible to avoid using - a hub by purchasing or making a special cross-over or null cable. But - note that some cards that try to sense autonegotiation and so on - expect to be talking to a hub and not another card, and thus may not - work in this configuration. - - - 6. Software Configuration and Card Diagnostics - - - For the oldest (or the cheapest) ISA cards, the card settings (I/O, - IRQ, output media, etc.) were set by little black jumper blocks over - rows of pins. As cards got more fancy, these settings were switched - electronically, and the end user could store the preferred settings in - non volatile memory built into the card. A vendor supplied program - was used by the end user to alter these settings, removing the need to - open the computer up just to reconfigure a card. - - In most cases, if the configuration is done by software, and stored in - an EEPROM, you will usually have to boot DOS, and use the vendor - supplied DOS program to set the cards IRQ, I/O, mem_addr and whatnot. - Besides, hopefully it is something you will only be setting once. If - you don't have the DOS software for your card, try looking on the WWW - site of your card manufacturer. If you don't know the site name, take - a guess at it, i.e. `www.my_vendor.com' where `my_vendor' is the name - of your card manufacturer. This works for SMC, 3Com, and many many - other manufacturers. - - There are some cards for which Linux versions of the config utils - exist, and they are listed here. Donald has written a few small card - diagnostic programs that run under Linux. Most of these are a result - of debugging tools that he has created while writing the various - drivers. Don't expect fancy menu-driven interfaces. You will have to - read the source code to use most of these. Even if your particular - card doesn't have a corresponding diagnostic, you can still get some - information just by typing cat /proc/net/dev -- assuming that your - card was at least detected at boot. - - In either case, you will have to run most of these programs as root - (to allow I/O to the ports) and you probably want to shut down the - ethercard before doing so by typing ifconfig eth0 down first. - - - 6.1. Configuration Programs for Ethernet Cards - - - - 6.1.1. WD80x3 Cards - - - For people with wd80x3 cards, there is the program wdsetup which can - be found in wdsetup-0.6a.tar.gz on Linux ftp sites. It is not being - actively maintained, and has not been updated for quite a while. If it - works fine for you then great, if not, use the DOS version that you - should have got with your card. If you don't have the DOS version, you - will be glad to know that the SMC setup/driver disks are available at - SMC's ftp site. Of course, you have to have an EEPROM card to use - this utility. Old, old wd8003 cards, and some wd8013 clones use - jumpers to set up the card instead. - - - 6.1.2. Digital / DEC Cards - - - The Digital EtherWorks 3 card can be configured in a similar fashion - to the DOS program NICSETUP.EXE. David C. Davies wrote this and other - tools for the EtherWorks 3 in conjunction with the driver. Look on you - local linux FTP site in the directory - /pub/linux/system/Network/management for the file that is named - ewrk3tools-X.XX.tar.gz. - - - 6.1.3. NE2000+ or AT/LANTIC Cards - - - Some Nat Semi DP83905 implementations (such as the AT/LANTIC and the - NE2000+) are software configurable. (Note that these cards can also - emulate a wd8013 card!) You can get the setup file atlantic.c from - Donald's ftp server, www.scyld.com to configure this card. In - addition, the configuration programs for the Kingston DP83905 cards - seem to work with all cards, as they don't check for a vendor specific - address before allowing you to use them. Start at the following URL: - Kingston and search for the programs - 20XX12.EXE and INFOSET.EXE - - Be careful when configuring NE2000+ cards, as you can give them bad - setting values which can cause problems. A typical example is - accidentally enabling the boot ROM in the EEPROM (even if no ROM is - installed) to a setting that conflicts with the VGA card. The result - is a computer that just beeps at you when you turn it on and nothing - appears on the screen. - - You can typically recover from this by doing the following: Remove the - card from the machine, and then boot and enter the CMOS setup. Change - the `Display Adapter' to `Not Installed' and change the default boot - drive to `A:' (your floppy drive). Also change the `Wait for F1 if - any Error' to `Disabled'. This way, the computer should boot without - user intervention. Now create a bootable DOS floppy (`format a: /s - /u') and copy the program default.exe from the 20XX12.EXE archive - above onto that floppy. Then type echo default > a:autoexec.bat so - that the program to set the card back to sane defaults will be run - automatically when you boot from this floppy. Shut the machine off, - re-install the ne2000+ card, insert your new boot floppy, and power it - back up. It will still probably beep at you, but eventually you should - see the floppy light come on as it boots from the floppy. Wait a - minute or two for the floppy to stop, indicating that it has finished - running the default.exe program, and then power down your computer. - When you then turn it on again, you should hopefully have a working - display again, allowing you to change your CMOS settings back, and to - change the card's EEPROM settings back to the values you want. - - Note that if you don't have DOS handy, you can do the whole method - above with a linux boot disk that automatically runs Donald's atlantic - program (with the right command line switches) instead of a DOS boot - disk that automatically runs the default.exe program. - - - - 6.1.4. 3Com Cards - - - The 3Com Etherlink III family of cards (i.e. 3c5x9) can be configured - by using another config utility from Donald. You can get the file - 3c5x9setup.c from Donald's ftp server, www.scyld.com to configure - these cards. (Note that the DOS 3c5x9B config utility may have more - options pertaining to the new ``B'' series of the Etherlink III - family.) - - - - 6.2. Diagnostic Programs for Ethernet Cards - - - Any of the diagnostic programs that Donald has written can be obtained - from his website. - - Ethercard Diagnostics - - Allied Telesis AT1700 -- at1700.c - - Cabletron E21XX -- e21.c - - HP PCLAN+ -- hp+.c - - Intel EtherExpress -- eexpress.c - - PCI NE2000 cards -- ne2k-pci-diag.c - - ISA NE2000 cards -- ne2k.c - - RealTek (ATP) Pocket adaptor atp-diag.c - - All Other Cards -- try typing cat /proc/net/dev and dmesg to see what - useful info the kernel has on the card in question. - - - 7. Technical Information - - - For those who want to understand a bit more about how the card works, - or play with the present drivers, this information should be useful. - If you do not fall into this category, then perhaps you will want to - skip this section. - - - 7.1. Programmed I/O vs. Shared Memory vs. DMA - - - If you can already send and receive back-to-back packets, you just - can't put more bits over the wire. Every modern ethercard can receive - back-to-back packets. The Linux DP8390 drivers (wd80x3, SMC-Ultra, - 3c503, ne2000, etc) come pretty close to sending back-to-back packets - (depending on the current interrupt latency) and the 3c509 and AT1500 - hardware have no problem at all automatically sending back-to-back - packets. - - - - 7.1.1. Programmed I/O (e.g. NE2000, 3c509) - - - Pro: Doesn't use any constrained system resources, just a few I/O - registers, and has no 16M limit. - - Con: Usually the slowest transfer rate, the CPU is waiting the whole - time, and interleaved packet access is usually difficult to - impossible. - - - 7.1.2. Shared memory (e.g. WD80x3, SMC-Ultra, 3c503) - - - Pro: Simple, faster than programmed I/O, and allows random access to - packets. Where possible, the linux drivers compute the checksum of - incoming IP packets as they are copied off the card, resulting in a - further reduction of CPU usage vs. an equivalent PIO card. - - Con: Uses up memory space (a big one for DOS users, essentially a non- - issue under Linux), and it still ties up the CPU. - - - 7.1.3. Bus Master Direct Memory Access (e.g. LANCE, DEC 21040) - - - Pro: Frees up the CPU during the data transfer, can string together - buffers, can require little or no CPU time lost on the ISA bus. Most - of the bus-mastering linux drivers now use a `copybreak' scheme where - large packets are put directly into a kernel networking buffer by the - card, and small packets are copied by the CPU which primes the cache - for subsequent processing. - - Con: (Only applicable to ISA bus cards) Requires low-memory buffers - and a DMA channel for cards. Any bus-master will have problems with - other bus-masters that are bus-hogs, such as some primitive SCSI - adaptors. A few badly-designed motherboard chipsets have problems with - ISA bus-masters. - - - 7.2. Performance Implications of Bus Width - - - The ISA bus can do 5.3MB/sec (42Mb/sec), which sounds like more than - enough for 10Mbps ethernet. In the case of the 100Mbps cards, you - clearly need a faster bus to take advantage of the network bandwidth. - a 33MHz 32 bit PCI bus can do 133MB/sec which isn't enough for GigE. - - - 7.2.1. ISA Eight bit and ISA 16 bit Cards - - - You probably will have a hard time buying a new ISA ethercard anymore, - but you can probably still find some surplus or obsolete cards - suitable for ``home-ethernet'' systems. If you want to really go - retro, you can even use an old half slot 8 bit ISA card, but note most - of them are 10Base-2. - - Some 8 bit cards that will provide adequate performance for light to - average use are the wd8003, the 3c503 and the ne1000. The 3c501 - provides poor performance, and these poor 15 year old relics of the XT - days should be avoided. (Send them to Alan, he collects them...) - - The 8 bit data path doesn't hurt performance that much, as you can - still expect to get about 500 to 800kB/s ftp download speed to an 8 - bit wd8003 card (on a fast ISA bus) from a fast host. And if most of - your net-traffic is going to remote sites, then the bottleneck in the - path will be elsewhere, and the only speed difference you will notice - is during net activity on your local subnet. - - - - 7.2.2. 32 Bit PCI (VLB/EISA) Ethernet Cards - - - Obviously a 32 bit interface to the computer is a must for 100Mbps and - higher networks. If you get into GigE, then the 133 megabyte/sec PCI - bus (for 33MHz 32 bit PCI) will still be your limiting factor. - - But an older 10Mbs network doesn't really require a 32 bit interface. - See ``Programmed I/O vs. ...'' as to why having a 10Mbps ethercard on - an 8MHz ISA bus is really not a bottleneck. Even though having a slow - ethercard on a fast bus won't necessarily mean faster transfers, it - will usually mean reduced CPU overhead, which is good for multi-user - systems. - - - 7.3. Performance Implications of Zero Copy - - - As network data is sent or received, you can easily imagine it being - copied to/from the application into kernel memory and from there being - copied to/from the card memory. All this data movement takes time and - CPU resources. As hinted above in the Bus Master DMA section, a - properly designed card can cut down on all this copying, and the most - ideal case would be zero copy of course. With some of the modern PCI - cards, zero copy is possible by simply pointing the card at the data - and essentially saying "get it yourself." If maximum performance with - minimum server load is important to you then check to see if your - hardware and driver will support zero copy. - - - 7.4. Performance Implications of Hardware Checksums - - - There is no guarantee that your data will travel from computer A to - computer B without being corrupted. To make sure the data is OK, the - sender adds up all the numbers that make up your data, and sends this - checksum along as well. The receiver recomputes this checksum and - compares it to the one the sender computed. If the two don't match, - the receiver knows that the data has been corrupted and it will reject - the bad data. - - Computing these sums takes time and extra load on the main computer. - Some of the more fancy cards have the ability to do these Rx and/or Tx - sums in hardware, which allows the main CPU to offload this task to - the card. - - Cards that require a data copy don't benefit as much from hardware - checksums, since the sum operation can be combined into the copy for - only a minimal additional overhead. Hence hardware Tx checksums are - only used in zero copy (i.e. applications using sendfile()) - situations, and so hardware Rx checksums are currently more useful. - - Note that a reasonable computer can saturate a 100BaseT link even when - doing the copy and checksum itself, so zerocopy/hw-checksum will only - show up as decreased CPU use. You would have to go to GigE to see a - speed increase. - - - 7.5. Performance Implications of NAPI (Rx interrupt mitigation) - - - When a card receives a packet from the network, what usually happens - is that the card asks the CPU for attention by raising an interrupt. - Then the CPU determines who caused the interrupt, and runs the card's - driver interrupt handler which will in turn read the card's interrupt - status to determine what the card wanted, and then in this case, run - the receive portion of the card's driver, and finally exits. - - Now imagine you are getting lots of Rx data, say 10 thousand packets - per second all the time on some server. You can imagine that the - above IRQ run-around into and out of the Rx portion of the driver adds - up to a lot of overhead. A lot of CPU time could be saved by - essentially turning off the Rx interrupt and just hanging around in - the Rx portion of the driver, since it knows there is pretty much a - steady flow of Rx work to do. This is the basic idea of NAPI. - - As of 2.6 kernels, some drivers have a config option to enable NAPI. - There is also some documentation in the Documentation/networking - directory that comes with the kernel. - - - - 8. Miscellaneous. - - - Any other associated stuff that didn't fit in anywhere else gets - dumped here. It may not be relevant, and it may not be of general - interest but it is here anyway. - - - 8.1. Transmit FIFO Buffers and Underrun Errors - - Donald wrote a nice description of what the Tx FIFO does and when an - error occurs. Here it is: - - Where the hardware supports it, my drivers have dynamic Tx FIFO tuning - code. A typical Ethernet chip has a Tx FIFO that holds data from the - bus before it is transmitted on the wire. The way this FIFO is - controlled is important for performance. - - Ideally you would like to start transmitting as soon as the first Tx - packet data arrives at the chip. The "Tx FIFO threshold" is a - parameter that specifies "start transmitting when N bytes have arrived - at the NIC chip". This parameter is initially set for a typical - configuration. But if a video card or SCSI controller is doing long - PCI bursts, the NIC chip will run out of buffered data before it can - get access to the bus again. This causes a FIFO underrun. - - The driver responds to the FIFO underrun by changing the Tx FIFO - threshold to a higher value. If this happens enough eventually the - chip will end up in store-and-forward mode, where it doesn't start - transmitting until the whole packet has been transferred. - - Some designs, such as the Adaptec Starfire, go one step further and - provide an indication that the FIFO almost ran out of data. This - allows the driver to tune the setting without risking a Tx error. - - It should be rare to see more than one or two Tx FIFO underruns. - Either the chip has very coarse Tx threshold settings, or the driver - increases the setting in large chunks to keep the PCI bursts on - natural boundaries. - - - 8.2. Passing Ethernet Arguments to the Kernel - - - Here are two generic kernel commands that can be passed to the kernel - at boot time (ether and reserve). This can be done with LILO, - loadlin, or any other booting utility that accepts optional arguments. - - For example, if the command was `blah' and it expected 3 arguments - (say 123, 456, and 789) then, with LILO, you would use: - LILO: linux blah=123,456,789 - - These boot time arguments can be made permanent so that you don't have - to re-enter them every time. Usually this is as simple as adding - append="blah=123,456,789" to the top of your /etc/lilo.conf file. See - the LILO documentation for more details. - - For more information on (and a complete list of) boot time arguments, - please see the BootPrompt-HOWTO - - - - 8.2.1. The ether command - - - The ether= argument is used in conjunction with drivers that are - directly built into the kernel. The ether= argument will have - absolutely no effect on a modular driver. In its most generic form, - it looks something like this: - - - ether=IRQ,BASE_ADDR,PARAM_1,PARAM_2,NAME - - - All arguments are optional. The first non-numeric argument is taken - as the NAME. - - IRQ: Obvious. An IRQ value of `0' (usually the default) means to - autoIRQ. It's a historical accident that the IRQ setting is first - rather than the base_addr -- this will be fixed whenever something - else changes. - - BASE_ADDR: Also obvious. A value of `0' (usually the default) means - to probe a card-type-specific address list for an ethercard. - - PARAM_1: It was orginally used as an override value for the memory - start for a shared-memory ethercard, like the WD80*3. Some drivers - use the low four bits of this value to set the debug message level. 0 - -- default, 1-7 -- level 1..7, (7 is maximum verbosity) 8 -- level 0 - (no messages). Also, the LANCE driver uses the low four bits of this - value to select the DMA channel. Otherwise it uses auto-DMA. - - PARAM_2: The 3c503 driver uses this to select between the internal and - external transceivers. 0 -- default/internal, 1 -- AUI external. The - Cabletron E21XX card also uses the low 4 bits of PARAM_2 to select the - output media. Otherwise it detects automatically. - - NAME: Selects the network device the values refer to. The standard - kernel uses the names `eth0', `eth1', `eth2' and `eth3' for bus- - attached ethercards, and `atp0' for the parallel port `pocket' - ethernet adaptor. The arcnet driver uses `arc0' as its name. The - default setting is for a single ethercard to be probed for as `eth0'. - Multiple cards can only be enabled by explicitly setting up their base - address using these LILO parameters. The 1.0 kernel has LANCE-based - ethercards as a special case. LILO arguments are ignored, and LANCE - cards are always assigned `eth' names starting at `eth0'. - Additional non-LANCE ethercards must be explicitly assigned to - `eth', and the usual `eth0' probe disabled with something like - `ether=0,-1,eth0'. ( Yes, this is bug. ) - - - 8.2.2. The reserve command - - - This next lilo command is used just like `ether=' above, ie. it is - appended to the name of the boot select specified in lilo.conf - reserve=IO-base,extent{,IO-base,extent...} - - - In some machines it may be necessary to prevent device drivers from - checking for devices (auto-probing) in a specific region. This may be - because of poorly designed hardware that causes the boot to freeze - (such as some ethercards), hardware that is mistakenly identified, - hardware whose state is changed by an earlier probe, or merely - hardware you don't want the kernel to initialize. - - The reserve boot-time argument addresses this problem by specifying an - I/O port region that shouldn't be probed. That region is reserved in - the kernel's port registration table as if a device has already been - found in that region. Note that this mechanism shouldn't be necessary - on most machines. Only when there is a problem or special case would - it be necessary to use this. - - The I/O ports in the specified region are protected against device - probes. This was put in to be used when some driver was hanging on a - NE2000, or misidentifying some other device as its own. A correct - device driver shouldn't probe a reserved region, unless another boot - argument explicitly specifies that it do so. This implies that - reserve will most often be used with some other boot argument. Hence - if you specify a reserve region to protect a specific device, you must - generally specify an explicit probe for that device. Most drivers - ignore the port registration table if they are given an explicit - address. - - For example, the boot line - - - LILO: linux reserve=0x300,32 ether=0,0x300,eth0 - - - keeps all device drivers except the ethercard drivers from probing - 0x300-0x31f. - - As usual with boot-time specifiers there is an 11 parameter limit, - thus you can only specify 5 reserved regions per reserve keyword. - Multiple reserve specifiers will work if you have an unusually - complicated request. - - - 8.3. Using the Ethernet Drivers as Modules - - - Most of the linux distributions now ship kernels that have very few - drivers built-in. The drivers are instead supplied as a bunch of - independent dynamically loadable modules. These modular drivers are - typically loaded by the administrator with the modprobe(8) command, or - in some cases they are automatically loaded by the kernel through - `kerneld' (in 2.0) or `kmod' (in 2.1) which then calls modprobe. - - Your particular distribution may offer nice graphical configuration - tools for setting up ethernet modules. If possible you should try and - use them first. The description that follows here gives information on - what underlies any fancy configuration program, and what these - programs change. - - The information that controls what modules are to be used and what - options are supplied to each module is usually stored in the file - /etc/modules.conf. The two main options of interest (for ethernet - cards) that will be used in this file are alias and options. The - modprobe command consults this file for module information. - - - The actual modules themselves are typically stored in a directory - named /lib/modules/`uname -r`/net where the uname -r command gives the - kernel version (e.g. 2.0.34). You can look in there to see which - module matches your card. - - The first thing you need in your modules.conf file is something to - tell modprobe what driver to use for the eth0 (and eth1 and...) - network interface. You use the alias command for this. For example, - if you have an ISA SMC EtherEZ card which uses the smc-ultra.o driver - module, you need to alias this driver to eth0 by adding the line: - - - alias eth0 smc-ultra - - - - Important Note: The alias above is only used by the module utilities - to translate a generic device name (e.g.eth0) into a hardware specific - driver module name. When the driver loads, it never even sees this - alias; instead it will simply choose the first free ethN (N=0,1,2,...) - device name available. Thus, if more than one ethernet module is being - loaded, the ethN assigned to the driver by the kernel may or may not - be the same as the one given on the alias line, depending on the order - in which the modules have been loaded. If you need to ensure that a - particular card is given a particular IP address, then read the - station address and assign your IP address based upon that. If you - are writing your own shell scripts for this, you can just parse the - ifconfig output; if using C, then you would use ioctl(ethfd, - SIOCGIFHWADDR, &ifreq). - - The other thing you may need is an options line indicating what - options are to be used with a particular module (or module alias). - Continuing with the above example, if you only used the single alias - line with no options line, the kernel would warn you (see dmesg) that - autoprobing for ISA cards is not a good idea. To get rid of this - warning, you would add another line telling the module what I/O base - the card is configured to, in this case say the hexidecimal address - 0x280 for example. - - - options smc-ultra io=0x280 - - - - Most ISA modules accept parameters like io=0x340 and irq=12 on the - insmod command line. It is REQUIRED or at least STRONGLY ADVISED that - you supply these parameters to avoid probing for the card. Unlike PCI - and EISA devices, there is no real safe way to do auto-probing for - most ISA devices, and so it should be avoided when using drivers as - modules. - - A list of all the options that each module accepts can be found in the - file: - - /usr/src/linux/Documentation/networking/net-modules.txt - - It is recommended that you read that to find out what options you can - use for your particular card. Note that some modules support comma - separated value lists for modules that have the capability to handle - multiple devices from a single module, such as all the 8390 based - drivers, and the PLIP driver. For exmple: - - - - ______________________________________________________________________ - options 3c503 io=0x280,0x300,0x330,0x350 xcvr=0,1,0,1 - ______________________________________________________________________ - - - - The above would have the one module controlling four 3c503 cards, with - card 2 and 4 using external transcievers. Don't put spaces around the - `=' or commas. - - Also note that a busy module can't be removed. That means that you - will have to ifconfig eth0 down (shut down the ethernet card) before - you can remove the module(s). - - The command lsmod will show you what modules are loaded, whether they - are in use, and rmmod will remove them. - - - 8.4. Related Documentation - - - Much of this info came from saved postings from the comp.os.linux - groups, which shows that it is a valuable resource of information. - Other useful information came from a bunch of small files by Donald - himself. Of course, if you are setting up an Ethernet card, then you - will want to read the NET-2 Howto so that you can actually configure - the software you will use. Also, if you fancy yourself as a bit of a - hacker, you can always scrounge some additional info from the driver - source files as well. There is usually a paragraph or two in there - describing any important points before any actual code starts.. - - For those looking for information that is not specific in any way to - Linux (i.e. what is 10BaseT, what is AUI, what does a hub do, etc.) I - strongly recommend making use of the newsgroup comp.dcom.lans.ethernet - and/or comp.sys.ibm.pc.hardware.networking. Newsgroup archives such - as those at dejanews.com can also be an invaluable source of - information. You can grab the newsgroup FAQ from RTFM (which holds - all the newsgroup FAQs) at the following URL: - - Usenet FAQs - - You can also have a look at the `Ethernet-HomePage' so to speak, which - is at the following URL: - - Ethernet-HomePage - - - - 8.5. Disclaimer and Copyright - - This document is not gospel. However, it is probably the most up to - date info that you will be able to find. Nobody is responsible for - what happens to your hardware but yourself. If your ethercard or any - other hardware goes up in smoke (...nearly impossible!) we take no - responsibility. ie. THE AUTHORS ARE NOT RESPONSIBLE FOR ANY DAMAGES - INCURRED DUE TO ACTIONS TAKEN BASED ON THE INFORMATION INCLUDED IN - THIS DOCUMENT. - - This document is Copyright (c) 1993-2000 by Paul Gortmaker. - Permission is granted to make and distribute verbatim copies of this - manual provided the copyright notice and this permission notice are - preserved on all copies. - - Permission is granted to copy and distribute modified versions of this - document under the conditions for verbatim copying, provided that this - copyright notice is included exactly as in the original, and that the - entire resulting derived work is distributed under the terms of a - permission notice identical to this one. - - Permission is granted to copy and distribute translations of this - document into another language, under the above conditions for - modified versions. - - A hint to people considering doing a translation. First, translate - the SGML source (available via FTP from the HowTo main site) so that - you can then generate other output formats. Be sure to keep a copy of - the original English SGML source that you translated from! When an - updated HowTo is released, get the new SGML source for that version, - and then a simple diff -u old.sgml new.sgml will show you exactly what - has changed so that you can easily incorporate those changes into your - translated SMGL source without having to re-read or re-translate - everything. - - If you are intending to incorporate this document into a published - work, please make contact (via e-mail) so that you can be supplied - with the most up to date information available. In the past, out of - date versions of the Linux HowTo documents have been published, which - caused the developers undue grief from being plagued with questions - that were already answered in the up to date versions. - - - 8.6. Closing - - - In the early days of linux, some ten(!) years ago, there were not a - lot of drivers and not a lot of users. I had the time to follow - individual driver developments, read about common problems in - newsgroups, and answer posted and e-mailed questions. Things are a - lot different now. There are a huge number of drivers, and a huge - number of users too, and there is no way I can keep up with each new - development! This is where I need your help. If you have found a - new driver that isn't mentioned here, or any glaring typos, or - outdated info in this document, please send an e-mail. It is big, and - it is easy to overlook stuff. If you have e-mailed about a change, and - it hasn't been included in the next version, please don't hesitate to - send it again, as it might have got lost amongst the usual sea of SPAM - and junk mail I get. - - Thanks! - - Paul Gortmaker, p_gortmaker @ yahoo.com - - -Setting up IP Aliasing on A Linux Machine Mini-HOWTO - -Harish Pillay - - h.pillay@ieee.org  - -Joy Yokley - Converted document from HTML to DocBook v4.1 (SGML) - -2001-01-23 -Revision History -Revision 1.2 2001-01-26 Revised by: JEY -Revision 1.1 2001-01-24 Revised by: JEY -Revision 1.0 1997-01-13 Revised by: HP - - -This is a cookbook recipe on how to set up and run IP aliasing on a Linux box -and how to set up the machine to receive e-mail on the aliased IP addresses. - ------------------------------------------------------------------------------ -Table of Contents -1. My Setup -2. Commands -3. Troubleshooting: Questions and Answers - 3.1. Question: How can I keep the settings through a reboot? - 3.2. Question: How do I set up the IP aliased machine to receive e-mail - on the various aliased IP addresses (on a machine using sendmail)? - - -4. Acknowledgements - ------------------------------------------------------------------------------ -1. My Setup - -  * IP Alias is standard in kernels 2.0.x and 2.2.x, and available as a - compile-time option in 2.4.x (IP Alias has been deprecated in 2.4.x and - replaced by a more powerful firewalling mechanism.) - -  * IP Alias compiled as a loadable module. You would have indicated in the - "make config" command to make your kernel, that you want the IP Masq to - be compiled as a (M)odule. Check the Modules HOW-TO (if that exists) or - check the info in /usr/src/linux/Documentation/modules.txt. - -  * I have to support 2 additional IPs over and above the IP already - allocated to me. - -  * A D-Link DE620 pocket adapter (not important, works with any Linux - supported network adapter). - - ------------------------------------------------------------------------------ -2. Commands - - 1. Load the IP Alias module (you can skip this step if you compiled the - module into the kernel): - /sbin/insmod /lib/modules/`uname -r`/ipv4/ip_alias.o - - 2. Setup the loopback, eth0, and all the IP addresses beginning with the - main IP address for the eth0 interface: - /sbin/ifconfig lo 127.0.0.1 - /sbin/ifconfig eth0 up - /sbin/ifconfig eth0 172.16.3.1 - /sbin/ifconfig eth0:0 172.16.3.10 - /sbin/ifconfig eth0:1 172.16.3.100 - - 172.16.3.1 is the main IP address, while .10 and .100 are the aliases. - The magic is the eth0:x where x=0,1,2,...n for the different IP - addresses. The main IP address does not need to be aliased. - - 3. Setup the routes. First route the loopback, then the net, and finally, - the various IP addresses starting with the default (originally allocated) - one: - /sbin/route add -net 127.0.0.0 - /sbin/route add -net 172.16.3.0 dev eth0 - /sbin/route add -host 172.16.3.1 dev eth0 - /sbin/route add -host 172.16.3.10 dev eth0:0 - /sbin/route add -host 172.16.3.100 dev eth0:1 - /sbin/route add default gw 172.16.3.200 - - That's it. - - -In the example IP address above, I am using the Private IP addresses (RFC -1918) for illustrative purposes. Substitute them with your own official or -private IP addresses. - -The example shows only 3 IP addresses. The max is defined to be 256 in /usr/ -include/linux/net_alias.h. 256 IP addresses on ONE card is a lot :-)! - -Here's what my /sbin/ifconfig looks like: -lo Link encap:Local Loopback - inet addr:127.0.0.1 Bcast:127.255.255.255 Mask:255.0.0.0 - UP BROADCAST LOOPBACK RUNNING MTU:3584 Metric:1 - RX packets:5088 errors:0 dropped:0 overruns:0 - TX packets:5088 errors:0 dropped:0 overruns:0 - -eth0 Link encap:10Mbps Ethernet HWaddr 00:8E:B8:83:19:20 - inet addr:172.16.3.1 Bcast:172.16.3.255 Mask:255.255.255.0 - UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1 - RX packets:334036 errors:0 dropped:0 overruns:0 - TX packets:11605 errors:0 dropped:0 overruns:0 - Interrupt:7 Base address:0x378 - -eth0:0 Link encap:10Mbps Ethernet HWaddr 00:8E:B8:83:19:20 - inet addr:172.16.3.10 Bcast:172.16.3.255 Mask:255.255.255.0 - UP BROADCAST RUNNING MTU:1500 Metric:1 - RX packets:0 errors:0 dropped:0 overruns:0 - TX packets:0 errors:0 dropped:0 overruns:0 - -eth0:1 Link encap:10Mbps Ethernet HWaddr 00:8E:B8:83:19:20 - inet addr:172.16.3.100 Bcast:172.16.3.255 Mask:255.255.255.0 - UP BROADCAST RUNNING MTU:1500 Metric:1 - RX packets:1 errors:0 dropped:0 overruns:0 - TX packets:0 errors:0 dropped:0 overruns:0 - -And /proc/net/aliases: -device family address -eth0:0 2 172.16.3.10 -eth0:1 2 172.16.3.100 - -And /proc/net/alias_types: -type name n_attach -2 ip 2 - -Of course, the stuff in /proc/net was created by the ifconfig command and not -by hand! ------------------------------------------------------------------------------ - -3. Troubleshooting: Questions and Answers - -3.1. Question: How can I keep the settings through a reboot? - -Answer: Whether you are using BSD-style or SysV-style (Redhat?? for example) -init, you can always include it in /etc/rc.d/rc.local. Here's what I have on -my SysV init system (Redhat?? 3.0.3 and 4.0): - -My /etc/rc.d/rc.local: (edited to show the relevant portions) -#setting up IP alias interfaces -echo "Setting 172.16.3.1, 172.16.3.10, 172.16.3.100 IP Aliases ..." -/sbin/ifconfig lo 127.0.0.1 -/sbin/ifconfig eth0 up -/sbin/ifconfig eth0 172.16.3.1 -/sbin/ifconfig eth0:0 172.16.3.10 -/sbin/ifconfig eth0:1 172.16.3.100 -#setting up the routes -echo "Setting IP routes ..." -/sbin/route add -net 127.0.0.0 -/sbin/route add -net 172.16.3.0 dev eth0 -/sbin/route add -host 172.16.3.1 eth0 -/sbin/route add -host 172.16.3.10 eth0:0 -/sbin/route add -host 172.16.3.100 eth0:1 -/sbin/route add default gw 172.16.3.200 -# ------------------------------------------------------------------------------ - -3.2. Question: How do I set up the IP aliased machine to receive e-mail on -the various aliased IP addresses (on a machine using sendmail)? - -Answer: Create (if it doesn't already exist) a file called, /etc/ -mynames.cw,for example. The file does not have to be this exact name nor in -the /etc directory. - -In that file, place the official domain names of the aliased IP addresses. If -these aliased IP addresses do not have a domain name, then you can place the -IP address itself. - -The /etc/mynames.cw might look like this: -# /etc/mynames.cw - include all aliases for your machine here; # is a comment -domain.one.net -domain.two.com -domain.three.org -4.5.6.7 - -In your sendmail.cf file, where it defines a file class macro Fw, add the -following: - -################## -# local info # -################## - - -# file containing names of hosts for which we receive email -Fw/etc/mynames.cw - - -That should do it. Test out the new setting by invoking sendmail in test -mode. The following is an example: -ganymede$ /usr/lib/sendmail -bt -ADDRESS TEST MODE (ruleset 3 NOT automatically invoked) -Enter < ruleset> < address> -> 0 me@4.5.6.7 -rewrite: ruleset 0 input: me @ 4 . 5 . 6 . 7 -rewrite: ruleset 98 input: me @ 4 . 5 . 6 . 7 -rewrite: ruleset 98 returns: me @ 4 . 5 . 6 . 7 -rewrite: ruleset 97 input: me @ 4 . 5 . 6 . 7 -rewrite: ruleset 3 input: me @ 4 . 5 . 6 . 7 -rewrite: ruleset 96 input: me < @ 4 . 5 . 6 . 7 > -rewrite: ruleset 96 returns: me < @ 4 . 5 . 6 . 7 . > -rewrite: ruleset 3 returns: me < @ 4 . 5 . 6 . 7 . > -rewrite: ruleset 0 input: me < @ 4 . 5 . 6 . 7 . > -rewrite: ruleset 98 input: me < @ 4 . 5 . 6 . 7 . > -rewrite: ruleset 98 returns: me < @ 4 . 5 . 6 . 7 . > -rewrite: ruleset 0 returns: $# local $: me -rewrite: ruleset 97 returns: $# local $: me -rewrite: ruleset 0 returns: $# local $: me -> 0 me@4.5.6.8 -rewrite: ruleset 0 input: me @ 4 . 5 . 6 . 8 -rewrite: ruleset 98 input: me @ 4 . 5 . 6 . 8 -rewrite: ruleset 98 returns: me @ 4 . 5 . 6 . 8 -rewrite: ruleset 97 input: me @ 4 . 5 . 6 . 8 -rewrite: ruleset 3 input: me @ 4 . 5 . 6 . 8 -rewrite: ruleset 96 input: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 96 returns: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 3 returns: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 0 input: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 98 input: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 98 returns: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 95 input: < > me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 95 returns: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 0 returns: $# smtp $@ 4 . 5 . 6 . 8 $: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 97 returns: $# smtp $@ 4 . 5 . 6 . 8 $: me < @ 4 . 5 . 6 . 8 > -rewrite: ruleset 0 returns: $# smtp $@ 4 . 5 . 6 . 8 $: me < @ 4 . 5 . 6 . 8 > -> - -Notice when I tested me@4.5.6.7, it delivered the mail to the local machine, -while me@4.5.6.8 was handed off to the smtp mailer. That is the correct -response. - -You are all set now. ------------------------------------------------------------------------------ - -4. Acknowledgements - -Thanks to all those who have done this great work on Linux and IP Aliasing. -And especially to Juan Jose Ciarlante for clarifying my questions. - -Kudos to the ace programmers! - -If you find this document useful or have suggestions on improvements, email -me at <[mailto:h.pillay@ieee.org] h.pillay@ieee.org>. - -Enjoy. - -For additional information on networking, you may want to consult the [http:/ -/www.linuxdoc.org/HOWTO/Networking-Overview-HOWTO.html] The Linux Networking -Overview HOWTO. - - IP Sub-Networking Mini-Howto - Robert Hart, hartr@interweft.com.au - v1.1, 30 August 2001 - - This document describes why and how to subnetwork an IP network - that - is using a single A, B or C Class network number to function correctly - on several interconnected networks. - - 1. Copyright - - This document is distributed under the terms of the GNU Public License - (GPL). - - - This document is directly supported by InterWeft IT Consultants - (Melbourne, Australia). - - - The latest version of this document is available at the InterWeft WWW - site at InterWeft IT Consultants and - from The Linux Documentation Project . - - - 2. Introduction - - With available IP network numbers rapidly becoming an endangered - species, efficient use of this increasingly scarce resource is - important. - - - This document describes how to split a single IP network number up so - that it can be used on several different networks. - - - This document concentrates on C Class IP network numbers - but the - principles apply to A and B class networks as well. - - - 2.1. Other sources of information - - There are a number of other sources of information that are of - relevance for both detailed and background information on IP numbers. - Those recommended by the author are:- - - - · The Linux Network Administrators Guide - . - - · The Linux System Administration Guide - . - - · TCP/IP Network Administration by Craig Hunt, published by O'Reilly - and Associates . - - - 3. The Anatomy of IP numbers - - Before diving into the delight of sub-networking, we need to establish - some IP number basics. - - - 3.1. IP numbers belong to Interfaces - NOT hosts! - - First of all, let's clear up a basic cause of misunderstanding - IP - numbers are not assigned to hosts. IP numbers are assigned to network - interfaces on hosts. - Eh - what's that? - - - Whilst many (if not most) computers on an IP network will possess a - single network interface (and have a single IP number as a - consequence), this is not the only way things happen. Computers and - other devices can have several (if not many) network interfaces - and - each interface has its own IP number. - - - So a device with 6 active interfaces (such as a router) will have 6 IP - numbers - one for each interface to each network to which it is - connected. The reason for this becomes clear when we look at an IP - network! - - - Despite this, most people refer to host addresses when referring to an - IP number. Just remember, this is simply shorthand for the IP number - of this particular interface on this host. Many (if not the majority) - of devices on the Internet have only a single interface and thus a - single IP number. - - - 3.2. IP Numbers as "Dotted Quads" - - In the current (IPv4) implementation of IP numbers, IP numbers consist - of 4 (8 bit) bytes - giving a total of 32 bits of available - information. This results in numbers that are rather large (even when - written in decimal notation). So for readability (and organisational - reasons) IP numbers are usually written in the 'dotted quad' format. - The IP number - - - - 192.168.1.24 - - - - is an example of this - 4 (decimal) numbers separated by (.) dots. - - - As each one of the four numbers is the decimal representation of an 8 - bit byte, each of the 4 numbers can range from 0 to 255 (that is take - on 256 unique values - remember, zero is a value too). - - - In addition, part of the IP number of a host identifies the network on - which the host resides, the remaining 'bits' of the IP number identify - the host (oops - network interface) itself. Exactly how many bits are - used by the network ID and how many are available to identify hosts - (interfaces) on that network is determined by the network 'class'. - - - 3.3. Classes of IP Networks - - There are three classes of IP numbers - - - · Class A IP network numbers use the leftmost 8 bits (the leftmost of - the dotted quads) to identify the network, leaving 24 bits (the - remaining three dotted quads) to identify host interfaces on that - network. - Class A addresses always have the leftmost bit of the leftmost byte - a zero - that is a decimal value of 0 to 127 for the first dotted - quad. So there are a maximum of 128 class A network numbers - available, with each one containing up to 33,554,430 possible - interfaces. - - However, the networks 0.0.0.0 (known as the default route) and - 127.0.0.0 (the loop back network) have special meanings and are not - available for use to identify networks. So there are only 126 - available A class network numbers. - - · Class B IP network numbers use the leftmost 16 bits (the leftmost - two dotted quads) to identify the network, leaving 16 bits (the - last two dotted quads) to identify host interfaces. Class B - addresses always have the leftmost 2 bits of the leftmost byte set - to 1 0. This leaves 14 bits left to specify the network address - giving 32767 available B class networks. B Class networks thus have - a range of 128 to 191 for the first of the dotted quads, with each - network containing up to 32,766 possible interfaces. - - · Class C IP network numbers use the leftmost 24 bits (the leftmost - three bytes) to identify the network, leaving 8 bits (the rightmost - byte) to identify host interfaces. Class C addresses always start - with the leftmost 3 bits set to 1 1 0 or a range of 192 to 255 for - the leftmost dotted quad. There are thus 4,194,303 available C - class network numbers, each containing 254 interfaces. (C Class - networks with the first byte greater than 223 are however reserved - and unavailable for use). - - In summary: - - - - Network class Usable range of first byte values (decimal) - A 1 to 126 - B 128 to 191 - C 192 to 254 - - - - There are also special addresses that are reserved for 'unconnected' - networks - that is networks that use IP but are not connected to the - Internet, These addresses are:- - - - · One A Class Network - 10.0.0.0 - - · 16 B Class Networks - 172.16.0.0 - 172.31.0.0 - - · 256 C Class Networks 192.168.0.0 - 192.168.255.0 - - - You will note that this document uses these sequences throughout to - avoid confusion with 'real' networks and hosts. - - - 3.4. Network numbers, interface addresses and broadcast addresses - - IP numbers can have three possible meanings:- - - - · the address of an IP network (a group of IP devices sharing common - access to a transmission medium - such as all being on the same - Ethernet segment). A network number will always have the interface - (host) bits of the address space set to 0 (unless the network is - sub-networked - as we shall see); - - · the broadcast address of an IP network (the address used to 'talk', - simultaneously, to all devices in an IP network). Broadcast - addresses for a network always have the interface (host) bits of - the the address space set to 1 (unless the network is sub-networked - - again, as we shall see). - - · the address of an interface (such as an Ethernet card or PPP - interface on a host, router, print server etc). These addresses can - have any value in the host bits except all zero or all 1 - because - with the host bits all 0, the address is a network address and with - the host bits all 1 the address is the broadcast address. - - - In summary and to clarify things - - - - For an A class network... - (one byte of network address space followed by three bytes of host - address space) - - 10.0.0.0 is an A Class network number because all the host - bits of the address space are 0 - 10.0.1.0 is a host address on this network - 10.255.255.255.255 is the broadcast address of this network - because all the host bits of the address space are 1 - - For a B class network... - (two bytes of network address space followed by two bytes of host - address space) - - 172.17.0.0 is a B Class network number - 172.17.0.1 is a host address on this network - 172.17.255.255 is the network broadcast address - - For a C Class network... - (three bytes of network address space followed by one byte of host - address space) - - 192.168.3.0 is a C Class network number - 192.168.3.42 is a host address on this network - 192.168.3.255 is the network broadcast address - - - - Almost all IP network numbers remaining available for allocation at - present are C Class addresses. - - - 3.5. The network mask - - The network mask is more properly called the subnetwork mask. However, - it is generally referred to as the network mask. - - - It is the network mask and its implications on how IP addresses are - interpreted locally on an IP network segment that concerns us most - here, as this determines what (if any) sub-networking occurs. - - - The standard (sub-) network mask is all the network bits in an address - set to '1' and all the host bits set to '0'. This means that the - standard network masks for the three classes of networks are:- - - - · A Class network mask: 255.0.0.0 - - · B Class network mask: 255.255.0.0 - - · C Class network mask: 255.255.255.0 - - - There are two important things to remember about the network mask:- - - · The network mask affects only the local interpretation of local IP - numbers (where local means on this particular network segment); - - · The network mask is not an IP number - it is used to modify how - local IP numbers are interpreted locally. - - - 4. What are subnets? - - A subnet is a way of taking a single IP network address and locally - splitting it up so that this single network IP address can actually be - used on several interconnected local networks. Remember, a single IP - network number can only be used on a single network. - - - The important word here is locally: as far as the world outside the - machines and physical networks covered by the sub-netted IP network - are concerned, nothing whatsoever has changed - it is still just a - single IP network. This is important - sub-networking is a local - configuration and is invisible to the rest of the world. - - - 5. Why subnetwork? - - The reasons behind sub-networking date back to the early specification - of IP - where just a few sites were running on Class A network - numbers, which allow for millions of connected hosts. - - - It is obviously a huge traffic and administration problem if all IP - computers at a large site need to be connected to the same network: - trying to manage such a huge beast would be a nightmare and the - network would (almost certainly) collapse under the load of its own - traffic (saturate). - - - Enter sub-networking: the A class IP network address can be split up - to allow its distribution across several (if not many) separate - networks. The management of each separate network can easily be - delegated as well. - - - This allows small, manageable networks to be established - quite - possibly using different networking technologies. Remember, you cannot - mix Ethernet, Token Ring, FDDI, ATM etc on the same physical network - - they can be interconnected, however! - - - Other reasons for sub-networking are:- - - · Physical site layout can create restrictions (cable run lengths) in - terms of the how the physical infrastructure can be connected, - requiring multiple networks. Sub-networking allows this to be done - in an IP environment using a single IP network number. - This is in fact now very commonly done by ISPs who wish to give - their permanently connected clients with local networks static IP - numbers. - - · Network traffic is sufficiently high to be causing significant slow - downs. By splitting the network up using subnetworks, traffic that - is local to a network segment can be kept local - reducing overall - traffic and speeding up network connectivity without requiring more - actual network bandwidth; - - · Security requirements may well dictate that different classes of - users do not share the same network - as traffic on a network can - always be intercepted by a knowledgeable user. Sub-networking - provides a way to keep the marketing department from snooping on - the R & D network traffic (or students from snooping on the - administration network)! - - · You have equipment which uses incompatible networking technologies - and need to interconnect them (as mentioned above). - - - 6. How to subnetwork a IP network number - - Having decided that you need to subnetwork your IP network number, how - do you go about it? The following is an overview of the steps which - will then be explained in detail:- - - - · Set up the physical connectivity (network wiring and network - interconnections - such as routers; - - · Decide how big/small each subnetwork needs to be in terms of the - number of devices that will connect to it - ie how many usable IP - numbers are required for each individual segment. - - · Calculate the appropriate network mask and network addresses; - - · Give each interface on each network its own IP address and the - appropriate network mask; - - · Set up the routes on the routers and the appropriate gateways, - routes and/or default routes on the networked devices; - - · Test the system, fix problems and then relax! - - - For the purpose of this example, we will assume we are sub-networking - a single C class network number: 192.168.1.0 - - - This provides for a maximum of 254 connected interfaces (hosts), plus - the obligatory network number (192.168.1.0) and broadcast address - (192.168.1.255). - - - 6.1. Setting up the physical connectivity - - You will need to install the correct cabling infrastructure for all - the devices you wish to interconnect designed to meet your physical - layout. - - - You will also need a mechanism to interconnect the various segments - together (routers, media converters etc.). - - - A detailed discussion of this is obviously impossible here. Should you - need help, there are network design/installation consultants around - who provide this sort of service. Free advice is also available on a - number of Usenet news groups (such as comp.os.linux.networking). - - - 6.2. Subnetwork sizing - - There is a play off between the number of subnetworks you create and - 'wasted' IP numbers. - - - Every individual IP network has two addresses unusable as interface - (host) addresses - the network IP number itself and the broadcast - address. When you subnetwork, each subnetwork requires its own, unique - IP network number and broadcast address - and these have to be valid - addresses from within the range provided by the IP network that you - are sub-networking. - - - So, by sub-networking an IP network into two separate subnetworks, - there are now two network addresses and two broadcast addresses - - increasing the 'unusable' interface (host) addresses; creating 4 - subnetworks creates eight unusable interface (host) addresses and so - on. - - - In fact the smallest usable subnetwork consists of 4 IP numbers:- - - · Two usable IP interface numbers - one for the router interface on - that network and one for the single host on that network. - - · One network number. - - · One broadcast address. - - - Quite why one would want to create such a small network is another - question! With only a single host on the network, any network - communication must go out to another network. However, the example - does serve to show the law of diminishing returns that applies to sub- - networking. - - - In principle, you can only divide your IP network number into 2^n - (where n is one less that the number of host bits in your IP network - number) equally sized subnetworks (you can subnetwork a subnetwork and - combine subnetworks however). - - - So be realistic about designing your network design - you want the - minimum number of separate local networks that is consistent with - management, physical, equipment and security constraints! - - - 6.3. Calculating the subnetwork mask and network numbers - - The network mask is what performs all the local magic of dividing an - IP network into subnetworks. - - - The network mask for an un-sub-networked IP network number is simply a - dotted quad which has all the 'network bits' of the network number set - to '1' and all the host bits set to '0'. - - - So, for the three classes of IP networks, the standard network masks - are:- - - · Class A (8 network bits) : 255.0.0.0 - - · Class B (16 network bits): 255.255.0.0 - - · Class C (24 network bits): 255.255.255.0 - - - The way sub-networking operates is to borrow one or more of the - available host bits and make then make interfaces locally interpret - these borrowed bits as part of the network bits. So to divide a - network number into two subnetworks, we would borrow one host bit by - setting the appropriate bit in the network mask of the first (normal) - host bit to '1'. - - - For a C Class address, this would result in a netmask of - 11111111.11111111.11111111.10000000 - or 255.255.255.128 - - - For our C Class network number of 192.168.1.0, these are some of the - sub-networking options you have:- - - - ______________________________________________________________________ - No of No of - subnets Hosts/net netmask - 2 126 255.255.255.128 (11111111.11111111.11111111.10000000) - 4 62 255.255.255.192 (11111111.11111111.11111111.11000000) - 8 30 255.255.255.224 (11111111.11111111.11111111.11100000) - 16 14 255.255.255.240 (11111111.11111111.11111111.11110000) - 32 6 255.255.255.248 (11111111.11111111.11111111.11111000) - 64 2 255.255.255.252 (11111111.11111111.11111111.11111100) - ______________________________________________________________________ - - - - In principle, there is absolutely no reason to follow the above way of - subnetworking where network mask bits are added from the most - significant host bit to the least significant host bit. However, if - you do not do it this way, the resulting IP numbers will be in a very - odd sequence! This makes it extremely difficult for us humans to - decide to which subnetwork an IP number belongs as we are not too good - at thinking in binary (computers on the other hand are and will use - whatever scheme you tell them with equal equanimity). - - - Having decided on the appropriate netmask, you then need to work out - what the various Network and broadcast addresses are - and the IP - number range for each of these networks. Again, considering only a C - Class IP Network number and listing only the final (host part) we - have:- - - - - ______________________________________________________________________ - Netmask Subnets Network B'cast MinIP MaxIP Hosts Total Hosts - -------------------------------------------------------------------------- - 128 2 0 127 1 126 126 - 128 255 129 254 126 252 - - 192 4 0 63 1 62 62 - 64 127 65 126 62 - 128 191 129 190 62 - 192 255 193 254 62 248 - - 224 8 0 31 1 30 30 - 32 63 33 62 30 - 64 95 65 94 30 - 96 127 97 126 30 - 128 159 129 158 30 - 160 191 161 190 30 - 192 223 193 222 30 - 224 255 225 254 30 240 - ______________________________________________________________________ - - - - As can be seen, there is a very definite sequence to these numbers, - which make them fairly easy to check. The 'downside' of sub-networking - is also visible in terms of the reducing total number of available - host addresses as the number of subnetworks increases. - - - With this information, you are now in a position to assign host and - network IP numbers and netmasks. - - - 7. Routing - - If you are using a Linux PC with two network interfaces to route - between two (or more) subnets, you need to have IP Forwarding enabled - in your kernel. Do a - - - ______________________________________________________________________ - cat /proc/ksyms | grep ip_forward - ______________________________________________________________________ - - - - You should get back something like... - - ______________________________________________________________________ - 00141364 ip_forward_Rf71ac834 - ______________________________________________________________________ - - - - If you do not, then you do not have IP-Forwarding enabled in your - kernel and you need to recompile and install a new kernel. - - - For the sake of this example, let us assume that you have decided to - subnetwork you C class IP network number 192.168.1.0 into 4 subnets - (each of 62 usable interface/host IP numbers). However, two of these - subnets are being combined into a larger single network, giving three - physical networks. - These are :- - - ______________________________________________________________________ - Network Broadcast Netmask Hosts - 192.168.1.0 192.168.1.63 255.255.255.192 62 - 192.168.1.64 192.168.1.127 255.255.255.192 62 - 192.168.1.128 192.168.1.255 255.255.255.128 124 (see note) - ______________________________________________________________________ - - - - Note: the reason the last network has only 124 usable network - addresses (not 126 as would be expected from the network mask) is that - it is really a 'super net' of two subnetworks. Hosts on the other two - networks will interpret 192.168.1.192 as the network address of the - 'non-existent' subnetwork. Similarly, they will interpret - 192.168.1.191 as the broadcast address of the 'non-existent' - subnetwork. - - - So, if you use 192.168.1.191 or 192 as host addresses on the third - network, then machines on the two smaller networks will not be able to - communicate with them. - - - This illustrates an important point with subnetworks - the usable - addresses are determined by the SMALLEST subnetwork in that address - space. - - - 7.1. The routing tables - - Let us assume that a computer running Linux is acting as a router for - this network. It will have three network interfaces to the local LANs - and possibly a fourth interface to the Internet (which would be its - default route. - - - Let us assume that the Linux computer uses the lowest available IP - address in each subnetwork on its interface to that network. It would - configure its network interfaces as - - - ______________________________________________________________________ - Interface IP Address Netmask - eth0 192.168.1.1 255.255.255.192 - eth1 192.168.1.65 255.255.255.192 - eth2 192.168.1.129 255.255.255.128 - ______________________________________________________________________ - - - - The routing it would establish would be - - - ______________________________________________________________________ - Destination Gateway Genmask Iface - 192.168.1.0 0.0.0.0 255.255.255.192 eth0 - 192.168.1.64 0.0.0.0 255.255.255.192 eth1 - 192.168.1.128 0.0.0.0 255.255.255.128 eth2 - ______________________________________________________________________ - - - - On each of the subnetworks, the hosts would be configured with their - own IP number and net mask (appropriate for the particular network). - Each host would declare the Linux PC as its gateway/router, specifying - the Linux PCs IP address for its interface on to that particular - network. - - Robert Hart Melbourne, Australia March 1997. - diff --git a/LDP/guide/docbook/Linux-Networking/Foreward.xml b/LDP/guide/docbook/Linux-Networking/Foreward.xml index 2cb1ea85..dab6a9d5 100644 --- a/LDP/guide/docbook/Linux-Networking/Foreward.xml +++ b/LDP/guide/docbook/Linux-Networking/Foreward.xml @@ -2,379 +2,71 @@ Foreward -A computer network is a group of two or more computers that communicate -through a transmission medium. Their main purpose is to share resources, -both physical and logical, such as files, devices (such as printers and -modems) and services. + +It is generally thought that a computer network is a group of two or +more computers that communicate through a transmission medium with their +main purpose being to share resources, both physical and logical, +such as files, devices (such as printers and modems) and services. +Basically, they consist of two fundamental things, devices and +connections. However, even this will not be of any real practical +use since there is no way in which for humans to use the network to receive +or distribute data. Hence, the basic neccessities for a successful and +useful computer network are a communication link, an interface to the +link and software to access the link. Note that for the rest of this +document, the words "link" and "connection" will be loosely synonymous. + -They could be thought though of being consisting of two fundamental things, devices and -connections. However, this will not be of any real practical use since there is no way -in which for humans to use the network to receive or distribute data. + +So how does the theory of information distribution actually apply in the +real world? + -Hence, the basic neccessities for a successful and useful computer network are a -communication link, an interface to the link and software to access the link. -NB - Throughtout this document, the words "link" and "connection" are loosely synonymous. + +Well, firstly, communication can take a number of forms. Namely, simplex, +half-duplex and duplex. In the case of simplex, this form of communication +is when only one party can only listen and the other can only send. In the +case of half-duplex, each party must be listening or sending but not both. +Finally, duplex or full-duplex communication occurs when both parties can +receive and send information at the same time. + -The theory behind sending and receiving information is all well and good but how does -it actually occur especially in the case of communication between more than two parties? + +Secondly, a common standard must be agreed to as to who will take precedence. +ie. a "common language" to determine whether there should be priority levels +on messages (in case there is an emergency), what type of error correction +should occur (ie. whether a simple mechanism such as even-parity will suffice +or whether something more sophisticated is required such as CRC-32), what +should happen when an error in communication does occur, etc.... In other +words, a protocol must be formed. In the network setting, a protocol is an +agreement between communicating parties/entities on how communication is to +progress. + -Well, firstly, communication can take a number of forms in simplex, half-duplex and duplex. -In the case of simplex, this form of communication is when only one party can only -listen and the other can only send. In the case of half-duplex, each party must be -listening or sending but not both. Finally, duplex or full-duplex communication -occurs when both parties can receive and send information at the same time. + +Thirdly, it has been generally found that the most efficient and least error +prone method by which to achieve these goals is through 'layering'. This idea +will be explained further on in the sections entitled Layering and the +OSI and TCP/IP network layering models but it basically involves abstracting +information starting from the top where humans see it (messages) and breaking +it down (ie. datagrames, packets, frames, cells and finally bits). As the +information is sent up or down further information will be removed or added +respectively to a 'header' which now forms a part of the original data. It is +this header which contains the information necessary for error correction, +message prioritisation, etc.... + -Secondly, a common standard must be agreed to as to who will take precedence. ie. a -"common language" to determine whether there should be priority levels on messages -(in case there is an emergency), what type of error correction should occur (ie. whether -a simple mechanism such as even-parity will suffice of whether something more -sophisticated is required such as CRC-32), what should happen when an error in -communication does occur, etc.... In other words, a protocol must be formed. -In the network setting, a protocol is an agreement between communicating parties/entities -on how communication is to progress. - -Thirdly, it has been generally found that the most efficient and least error prone -method by which to achieve these goals is through 'layering'. This idea will be explained -further on in the section entitled the OSI and TCP/IP network layering models but it basically involves -abstracting information starting from the top where humans see it (messages) and breaking it down -(ie. datagrames, packets, frames, cells and finally bits). As the information is sent up or down -further information will be removed or added respectively to a 'header' which now forms a part of the -original data. It is this header which contains the information necessary for error correction, message -prioritisation, etc.... - -Using a virtual machine concept, each layer is a virtual machine, with layer one being the -real machine. The top layer provides the highest level functionality or the functions that -are most abstracted from the physical world. The top layer is directly interpreted by human beings. -The bottom layer provides the lowest level functionality, ie. it is strongly related to the -physical world and (preferably) is not interpreted by human beings. - -In a layered model, entities forming the corresponding layers on different machines are -called peers and protocols forms a central part of network software. The layered approach -to networks and general software engineering principles adopted add to the structure -of network software. Each layer performs a small set of well defined functions (services) -required by the layer above it. - -The layered approach offers a communication setting where layer n on one machine can have a -conversation with layer n on the other mahine. Layer n-protocol is essentially a set of rules -and conventions facilitating this conversation. This includes addressing and specification of -necessary DU's (Data Units). - -You should note that this communication between layers is virtual. There is no physical or -direct communication between layers of two layer-n hosts. The actual communication takes -place at the lowest layer (usually called the physical layer). The conglomeration of layers -and corresponding layer protocols form a network architecture. - -The general consensus in computing is that a typical data unit exchanged between systems -should consist of the address of the transmitting computer, the address of the receiving -computer, the actual data being transmitted, as well as a checksum. - -This leads us to the problem of addressing. In order for computers to communicate properly -it was generally agreed by Ethernet card manufacturers that all NIC cards would possess a -48 bit unique address. This is called a MAC address but is often called the hardware address -of these cards. This aids portability and modularity of LAN (Local Area Network) technology and -software to a major extent. The data units here are called as frames. This is all you need -really to have a small network. - -However, there exists a fundamental problem if you were to extend this idea to larger systems -(ie. greater than 100 nodes). It is extremely difficult to keep track of and maintain such a -network due to administrators having to keep track of the name of each and every system and -deciding what the name of new computers on the network will be. - -For this reason, the idea of hostnames and network addresses were developed. For example, -on the LAN a computer may be called "computer" but on the internet it may be referred to -as "computer.network.com". The idea behind network addressing came to be known simply now -as IP (Internet Prococol) addressing. - -You could say that the idea behind computer network addressing is roughly synonymous with that -of the rather mundane telephone network. To call a number in your region all you have to do -is dial that number. To call a number in another state you must add a number of other digits -to the start of the number. To call a number that is overseas you must add further digits -to the beginning of the now burgeoning number. The only difference between telephone and -network addressing is that you add numbers to the front rather than at the end of the address. - -To this day, it has been found that by utilising so called layer architecture for networks, -suitable protocols and appropriate communication technologies the issues of network -application interfacing, network addressing and network functionality can be addressed -successfully. - -There are eight main network technology issues that must be addressed at each layer in the -architecture though. These are outlined below: - -1. Mechanism of identifying senders and receivers: addressing. -2. Rules for data transfer: simplex, half-duplex, or full-duplex. -3. Logical channels: sharing a link among a number of connections. -4. Error control strategies: correction and detection. -5. Sequencing protocols for the correct order of messages: put messages in the correct order. -6. Incompatible speed between fast sender and slow receiver. -7. Message fragmentation and assembly. -8. Strategies for choosing routes. - -To study the above issues in detail please consult, Tannenbaum 4th edition. - -These design issues become recurring themes that are usually addressed by each and every -layer in the architecture. As a stark example, although error detection and correction is -undertaken by the low level transmission protocol that sends characters from a terminal -to the display, the user will also implement error detection and correction at the highest -level by deleting an incorrect character and retyping. - -A concept of an interface is central to layered network architecture. It is important -to recognise implementation and design issues and pertaining to interfaces of layers -and their respective functions and services. - -- entity: in software, it is sometimes called a process; in hardware in hardware it - could mean in pratice an I/O chip -- peer enties: entities at the same layer in different machines/devices -- service provider: eg. layer n, a layer that provides a service -- service receiver: eg. layer n + 1, a layer that receives a service -- service access point (SAP): a point where service is accessed, for example a - function call in software, or the telephone for a telephone company -- protocol data unit (PDU): a data unit that is communicated between peer entities -- service data unit (SDU): the PDU from the serice receiver -- protocol control information (PCI): is appended by a service receiver to an SDU - in order to indicated the type of service required and forms the IDU -- interface data unit (IDU): the data unit that is given from a service receiver to - a service provider. - -The term "service" can be deemed to mean a number of things. These are outlined -below. - -Quality of Service: each service is chractereised by a quality of service. For example, -reliable service by such applications as file transfer - the data must be delivered -correctly but it may be unusually delayed. However, voice and video transmission may -allow some error in the data but does not allow delayed data. - -Connection and connectionless services are the two fundamental categories. The -distinctions between them may be intuitive but there are subtle differences. For -example, a connection-orientated services allows two communicating parties to make -use of the connection in any way they like - a telephone connection can even be -used for transmitting fax and digital information as the service provider doesn't -process the communication at any point through the network. - -However a connectionless services does not provide such a convenience because -for example a letter may be packaged and processed along the way, being stamped -for accounting, delivered using a car or plane, etc.... - -A service is formally specified by a set of primitives (operations) that define -the service interface. The primitives differ for different services. As a simple -example, a service may provide the following primitives: - -1. LISTEN: listen for an incoming communication request -2. CONNECT: make a communication request -3. RECEIVE: receive data of a communication -4. SEND: send data of a communication -5. DISCONNECT: disconnect or discontinue a communication - -As discussed before, each layer has specfic functions and offers certain services -to the layer above it. A service is a set of primitives (operations) that a layer -provides to the layer above it. In the definition of services, we do not specify -their implementation. The implementation is only visible to the provider of the -service. - -A protocol defines the implementation of the service and is not visible to the -user of the service. A protocol is a set of rules governing the format and -meaning of the frames, packets, or messages within a layer and can be changed -at will by entities, provided that they do not change the service visible to their -users. - -Attentuation is a physical phenomenon which causes a signal to gradually lose -power as it propogates through a medium. This is mainly due to due to two -factors, signal dispersion and signal absorption. Unfortunately, there is some -noise which generates a constant noise power, N, and so eventually, as the -signal travels a long enough distance, the signal poower will decrease to a -value less than the noise power. - -This is similar to the effect observed when you are attempting to communicate -with another person with your natural voice. As the person moves further away -the voice is harder to hear as the signal power spreads out and is absorbed -by obstacles, etc.... - -Attenuation is generally a factor of distance and frequency. - -This is very much in accordance with our current laws of physics. -The intensity if a signal is inversely proportional to the inverse square of the the signal distance. -You'll often notice that in military applications the usage of broad -frequency radar for spotting targets over great ranges and then the utilisation -of higher frequency signals as greater precision positioning is required. - -Most transmission medium will have a rating which gives the attenuation as a -function of frequency and distance, eg. the attenuation per kilometer. Ideally -the attenuation is zero because this represents no loss in the signal power. - -This leads us to the issue of digital transmission versus analogue -transmission. The primary advantage of digital transmission over analogue -transmission is the reduction in noise. The digital transmission system -reduces noise over successive transmissions because small variations in -the signal can be rounded off to the nearest level. Analogue transmission -systems need to filter out the noise, but the filter itself can sometimes -be a source of noise and generally, noise can accumulate to an unacceptable -level in an analogue tranmission system. - -Consider two types of repeater to understand of digital transmission. In the -first instance (analogue) the situation is roughly synonymous with someone -who doesn't know Korean and who is trying to relay a message from one Korean -to another. It can be done if the person simply repeats the sounds that are -heard. In digital tranmission repitition would be more along the lines of -someone knowing Korean and actually "re-saying" what was heard (perhaps even -correcting for errors in what was heard). - -Systems which transmit ananlogue signals (such as the calssical radio and -television broadcasting systems) can use one of three well known techniques, - Amplitude Modulation (AM), Frequency Modulation (FM), and Phase Modulation (PM). -AM works by varying the amplitude of a signal to code the bit stream. FM works -by varying frequency of a signal to code the bit stream. PM works by varying -the phase of a signal to code the bit stream. - -To allow two transmission medium (usually of the same type) to be directly -connected the concept of a switch was developed. A general switch can be -built from many basic switches and is somtimes referred to as a switching -fabric. A lot of research and development contines in an attempt to build -better switching fabrics. - -A circuit switched network operates at the physical layer to provide a single, -continuous transmission medium between any two hosts or end devices in the -network. Circuit switching is perhaps the most straightforward approach to building -communication network. Computer networks didn't actually evolve using circuit -switching though circuit switching is being considered for certain computer -applications such as video and voice. Because circuit switching constucts a -single long transmission medium with at most analogue repeaters the end devices -(in this case telephones) are able to modulate the signal on the medium however -they choose. This is also why two modems can communicate with one another over -a telephone network. - -Multiplexing is used to share a single transmission medium among a number of -individual transmissions. The demultiplexer just undoes what the multiplexer -does. Therefore the multiplexer and demultiplexer must directly cooperate. -Multiplexers and demultiplexers are not so much network devices are not so much -network devices but functionality that is contained within a network device. -Switches (in the sense described here) may be similarly categorized in this way. - -The transmission medium can be multiplexed in the time domain, called TDM (Time Domain -Multiplexing), using a simple switch and clocked control. Because of delays incurred -in the transmission line, the clocks may need to be out of phase with one another. -See that with the TDM, the shared medium must be able to transmit at a bit rate -that equals (or is better than) the sum of input bit rates. The swithes must also -be able to switch fast enough. - -The previous example was assuming a synchronous transmission mode. In general, bit -streams can be divided into DU's called cells. Cells are fixed in length so that the -receiver knows when one cell finishes and the next cell begins. - -Alternatively there is ATM (Asynchronous Transmission Mode, ATM is also the name -given to a popular network layer device that uses this multiplexing technique.), -where signals are irregularly multiplexed. How does the receiver know what order -the signals were multiplexed in? - -Additional information is needed in the multiplexed signal. One way is to add a -header or label to the front of each cell. The header identifies the cell. - -Using a header means using additional bits, which becomes overhead. Thus, to reduce -the overhead the cells should be reasonably larger than the header. Cells for -modern ATM transmission systems are about 50 butes in size. - -Because modulators can transmit signals at different frequency bands, it is possible -to transmit several signals at one, with each signal transmitted within a different -frequency band. In this case the different signals have been frequency domain multiplexed. -This is known as FDM, (Frequency Domain Multiplexing). - -Similar to FDM, WDM (Wavelength Division Multiplexing) uses each wavelength of light to -transmit a signal. WDM is for fiber optic systems. The number of wavelengths per -fiber, currently available, is about 300. Each wavelength can carry about 10Gbps. -This makes 3Tbps. AT&T predict that up to 1024 wavelengths may be available in the future. - -The hub/optical hub is clearly an analogue device - input signals are reflected to all -outputs. It is also called passive, because it does not introduce any power to the signal -(otherwise it would be called active). Considering the hub as a device which repeats -input from an incoming signal on all outputs is quite simplistic however the basic -function should be understandable. When examining the Data-link layer it will become -clearer how computers communicate using a hub. For wireless communication, the -transmission of each device is implicity received by every other device. This is an -implicit hub. - -Wireless communication usually takes place using the IEEE 802.11 standard which specifies -an unlicensed radio spectrum at 2.4GHz and provides wireless Ethernet access at 11Mbps. -There is also some spectrum allocated between 5GHz ad 6GHz that provides 54Mbps. -Sophisticated codes and frequency sharing technology is used to maximise the usage of -this communication medium. This topic is strictly concerned with Medium Access Control, -to be discussed later. Wireless also allows point-to-point communication in the sense -that each point-to-point link or channel is a dedicated frequency range that no other -pair of devices will use. - -Analogue telephone networks use conventional circuit switching networks to -construct a connection between two telephones. You have seen that a modem -converts digital signals to analogue to be transmitted over an analogue -telephone network. - -Digital telephone networks use a codec or coder-decoder to convert analogue -telephone (or modem) signals into digital form! This is so that new digital -techniques can be used within a conventionally an analogue network, ie. -transparently to the analogue devices. The codec is used to convert from -analogue to digital and digital to analogue. - -Enough is known now to consider the complexity of a large digital network -that supporst communication of various kinds. As technologies improve some -networks become more dominant than others. In todays world we see a -significant shift towards computer networks, away from conventional -telecommunication networks. - -This doesn't mean the end of telecommunications, but rather a collapse of -outdated technological layers towards the "core" networks that they connect -to. It will become more apparent to you as we progres through this subject -that networks can be built on top of other networks which are themseleves -built on top of ther networks. - -The size and scale of a network can vary substantially from Local Area Networks -(LANs) which usually connect 10-15 computers in a -small area (usually a small building) to Metropolitan Area Networks (MANs) -which use long-distance links (such as telephone lines or dedicated media) -to connect two or more locations within a single city or metropolitan area -to Wide Area Networks (WANs) which use the same technology as MANs to -connect computers in distant locations but in different cities -or even different countries. - -There are two basic types of networks: client-server networks, which use -dedicated servers; and peer-to-peer networks, which (normally) share files -between workstations. - -Server-based networks (also called client-server networks) use a dedicated -server machine which provides files and printers to network workstations -called clients. Client machines are simply used by network users, and usually -do not share files or printers. The key benefit of the server-client model is -in centralization. There is only a single point of control for network acccess, -security, and management. The disadvantages of a server-based network are the -higher cost of dedicated servers and network operating systems, as well as the -increased level of administrative effort required. - -Conversely, peer-to-peer networks consist solely of workstations called peers. -Each workstation can be used by a user, and can also make shared files or -printers available to users at other workstations. The advantages of peer -networks include their ease of installation and use, their relative -inexpensiveness in comparison with server-based networks (since a dedicated -server is not required) and the fact that an administrator mightn't be required -(if users are able to manage resource sharing). The primary disadvantage of -peer networks is the lack of a central control mechanism. Each user controls -access to their own workstation's shared files and printers. In a large scale -network network, such a security policy is difficult to manage without -compromising security. Further, a workstation that is being accessed by peers -can also be slowed down, inconveniencing the user at that workstation. Hence, -its clear that this system is best suited to smaller networks. - -The basic idea behind this layering approach is to be able to abstract the -entire process to make it easier to network, program and solve problems -that may arise during networking. Each layer serves a specific purpose -with the application layer being the most visible to the user (in terms of -interfacing with the network) and physical layer being the least. - -From a users persepective the impact of this approach is fairly nelgigible. -However, to the programmer it allows them to be able to add information to -the data being manipulated so that there is a lower chance of data + +Further, it is as a direct consequence of this abstraction process +that problems associated with network usage, programming and troubleshooting +can be eased. For example, to the programmer it allows them to be able to add +information to the data being manipulated so that there is a lower chance of data corruption as it travels through the network, so that transportation of the data is sped up and also so that there is some flow control. To the system administrator, it can form a valuable idea as to how to fix any potential issues. For example, let's say that there seems to be a network -connection issue. The administrator can proceed in one of either two ways. -He can move upwards through the hierarchy or downwards, either way he is -eliminating possible issues at each point which therefore reduces the -possible number of problems at each point. The purpose of each layer will -be explained in the sections on the TCP/IP and OSI networking models. +connection problem. The administrator can proceed in one of either two ways. +He can move upwards through the layer hierarchy or downwards. Either way, he is +reducing the problem search space as he proceeds through the stack. + diff --git a/LDP/guide/docbook/Linux-Networking/Linux-Networking.xml b/LDP/guide/docbook/Linux-Networking/Linux-Networking.xml index 7fd4b2f5..0b8ca36e 100644 --- a/LDP/guide/docbook/Linux-Networking/Linux-Networking.xml +++ b/LDP/guide/docbook/Linux-Networking/Linux-Networking.xml @@ -8,7 +8,8 @@ - + + ]> @@ -17,8 +18,8 @@ Linux Networking Study Guide -Version 0.05 -2004-10-02 +Version 0.10 +2005-02-08 Binh @@ -43,17 +44,16 @@ more popular derivatives of Unix. It is meant to be distribution-independant and accessible to all members of the Linux community. However, a working knowledge of Linux as well as its CLI (Command Line Interface) is assumed. Please note that this guide is not meant to be an all encompassing guide of networking under Linux and that little consideration -towards security is made. It was only designed to provide an overview of this subject and - - -For such issues please consult other pieces of documentation such -as those made available at the Linux Documentation Project, +towards security is made. It was only intended to provide an overview of this subject and +provide a means by which to extend one's knowledge of networking under Linux and other +well established documents. For issues related to networking under Linux that are outside +the scope of this document please consult the Linux Documentation Project, http://www.tldp.org. -Copyright 2004 Binh Nguyen +Copyright 2005 Binh Nguyen Trademarks are owned by their owners. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, @@ -75,10 +75,10 @@ http://cvsview.tldp.org/index.cgi/LDP/guide/docbook/Linux-Networking/ -Linux Networking - +Linux Networking Study Guide &Foreward; -&var; +&OSI; +&TCP-IP; &Glossary; diff --git a/LDP/guide/docbook/Linux-Networking/Overview.xml b/LDP/guide/docbook/Linux-Networking/Overview.xml index 475941e4..4a1305e3 100644 --- a/LDP/guide/docbook/Linux-Networking/Overview.xml +++ b/LDP/guide/docbook/Linux-Networking/Overview.xml @@ -2651,6 +2651,188 @@ the sections below. http://www.secretagent.com/networking/wan.html >Start Binh - + +Attentuation is a physical phenomenon which causes a signal to gradually lose +power as it propogates through a medium. This is mainly due to due to two +factors, signal dispersion and signal absorption. Unfortunately, there is some +noise which generates a constant noise power, N, and so eventually, as the +signal travels a long enough distance, the signal poower will decrease to a +value less than the noise power. + +This is similar to the effect observed when you are attempting to communicate +with another person with your natural voice. As the person moves further away +the voice is harder to hear as the signal power spreads out and is absorbed +by obstacles, etc.... + +Attenuation is generally a factor of distance and frequency. + +This is very much in accordance with our current laws of physics. +The intensity if a signal is inversely proportional to the inverse square of the the signal distance. +You'll often notice that in military applications the usage of broad +frequency radar for spotting targets over great ranges and then the utilisation +of higher frequency signals as greater precision positioning is required. + +Most transmission medium will have a rating which gives the attenuation as a +function of frequency and distance, eg. the attenuation per kilometer. Ideally +the attenuation is zero because this represents no loss in the signal power. + +This leads us to the issue of digital transmission versus analogue +transmission. The primary advantage of digital transmission over analogue +transmission is the reduction in noise. The digital transmission system +reduces noise over successive transmissions because small variations in +the signal can be rounded off to the nearest level. Analogue transmission +systems need to filter out the noise, but the filter itself can sometimes +be a source of noise and generally, noise can accumulate to an unacceptable +level in an analogue tranmission system. + +Consider two types of repeater to understand of digital transmission. In the +first instance (analogue) the situation is roughly synonymous with someone +who doesn't know Korean and who is trying to relay a message from one Korean +to another. It can be done if the person simply repeats the sounds that are +heard. In digital tranmission repitition would be more along the lines of +someone knowing Korean and actually "re-saying" what was heard (perhaps even +correcting for errors in what was heard). + +Systems which transmit ananlogue signals (such as the calssical radio and +television broadcasting systems) can use one of three well known techniques, + Amplitude Modulation (AM), Frequency Modulation (FM), and Phase Modulation (PM). +AM works by varying the amplitude of a signal to code the bit stream. FM works +by varying frequency of a signal to code the bit stream. PM works by varying +the phase of a signal to code the bit stream. + +To allow two transmission medium (usually of the same type) to be directly +connected the concept of a switch was developed. A general switch can be +built from many basic switches and is somtimes referred to as a switching +fabric. A lot of research and development contines in an attempt to build +better switching fabrics. + +A circuit switched network operates at the physical layer to provide a single, +continuous transmission medium between any two hosts or end devices in the +network. Circuit switching is perhaps the most straightforward approach to building +communication network. Computer networks didn't actually evolve using circuit +switching though circuit switching is being considered for certain computer +applications such as video and voice. Because circuit switching constucts a +single long transmission medium with at most analogue repeaters the end devices +(in this case telephones) are able to modulate the signal on the medium however +they choose. This is also why two modems can communicate with one another over +a telephone network. + +Multiplexing is used to share a single transmission medium among a number of +individual transmissions. The demultiplexer just undoes what the multiplexer +does. Therefore the multiplexer and demultiplexer must directly cooperate. +Multiplexers and demultiplexers are not so much network devices are not so much +network devices but functionality that is contained within a network device. +Switches (in the sense described here) may be similarly categorized in this way. + +The transmission medium can be multiplexed in the time domain, called TDM (Time Domain +Multiplexing), using a simple switch and clocked control. Because of delays incurred +in the transmission line, the clocks may need to be out of phase with one another. +See that with the TDM, the shared medium must be able to transmit at a bit rate +that equals (or is better than) the sum of input bit rates. The swithes must also +be able to switch fast enough. + +The previous example was assuming a synchronous transmission mode. In general, bit +streams can be divided into DU's called cells. Cells are fixed in length so that the +receiver knows when one cell finishes and the next cell begins. + +Alternatively there is ATM (Asynchronous Transmission Mode, ATM is also the name +given to a popular network layer device that uses this multiplexing technique.), +where signals are irregularly multiplexed. How does the receiver know what order +the signals were multiplexed in? + +Additional information is needed in the multiplexed signal. One way is to add a +header or label to the front of each cell. The header identifies the cell. + +Using a header means using additional bits, which becomes overhead. Thus, to reduce +the overhead the cells should be reasonably larger than the header. Cells for +modern ATM transmission systems are about 50 butes in size. + +Because modulators can transmit signals at different frequency bands, it is possible +to transmit several signals at one, with each signal transmitted within a different +frequency band. In this case the different signals have been frequency domain multiplexed. +This is known as FDM, (Frequency Domain Multiplexing). + +Similar to FDM, WDM (Wavelength Division Multiplexing) uses each wavelength of light to +transmit a signal. WDM is for fiber optic systems. The number of wavelengths per +fiber, currently available, is about 300. Each wavelength can carry about 10Gbps. +This makes 3Tbps. AT&T predict that up to 1024 wavelengths may be available in the future. + +The hub/optical hub is clearly an analogue device - input signals are reflected to all +outputs. It is also called passive, because it does not introduce any power to the signal +(otherwise it would be called active). Considering the hub as a device which repeats +input from an incoming signal on all outputs is quite simplistic however the basic +function should be understandable. When examining the Data-link layer it will become +clearer how computers communicate using a hub. For wireless communication, the +transmission of each device is implicity received by every other device. This is an +implicit hub. + +Wireless communication usually takes place using the IEEE 802.11 standard which specifies +an unlicensed radio spectrum at 2.4GHz and provides wireless Ethernet access at 11Mbps. +There is also some spectrum allocated between 5GHz ad 6GHz that provides 54Mbps. +Sophisticated codes and frequency sharing technology is used to maximise the usage of +this communication medium. This topic is strictly concerned with Medium Access Control, +to be discussed later. Wireless also allows point-to-point communication in the sense +that each point-to-point link or channel is a dedicated frequency range that no other +pair of devices will use. + +Analogue telephone networks use conventional circuit switching networks to +construct a connection between two telephones. You have seen that a modem +converts digital signals to analogue to be transmitted over an analogue +telephone network. + +Digital telephone networks use a codec or coder-decoder to convert analogue +telephone (or modem) signals into digital form! This is so that new digital +techniques can be used within a conventionally an analogue network, ie. +transparently to the analogue devices. The codec is used to convert from +analogue to digital and digital to analogue. + +Enough is known now to consider the complexity of a large digital network +that supporst communication of various kinds. As technologies improve some +networks become more dominant than others. In todays world we see a +significant shift towards computer networks, away from conventional +telecommunication networks. + +This doesn't mean the end of telecommunications, but rather a collapse of +outdated technological layers towards the "core" networks that they connect +to. It will become more apparent to you as we progres through this subject +that networks can be built on top of other networks which are themseleves +built on top of ther networks. + +The size and scale of a network can vary substantially from Local Area Networks +(LANs) which usually connect 10-15 computers in a +small area (usually a small building) to Metropolitan Area Networks (MANs) +which use long-distance links (such as telephone lines or dedicated media) +to connect two or more locations within a single city or metropolitan area +to Wide Area Networks (WANs) which use the same technology as MANs to +connect computers in distant locations but in different cities +or even different countries. + +There are two basic types of networks: client-server networks, which use +dedicated servers; and peer-to-peer networks, which (normally) share files +between workstations. + +Server-based networks (also called client-server networks) use a dedicated +server machine which provides files and printers to network workstations +called clients. Client machines are simply used by network users, and usually +do not share files or printers. The key benefit of the server-client model is +in centralization. There is only a single point of control for network acccess, +security, and management. The disadvantages of a server-based network are the +higher cost of dedicated servers and network operating systems, as well as the +increased level of administrative effort required. + +Conversely, peer-to-peer networks consist solely of workstations called peers. +Each workstation can be used by a user, and can also make shared files or +printers available to users at other workstations. The advantages of peer +networks include their ease of installation and use, their relative +inexpensiveness in comparison with server-based networks (since a dedicated +server is not required) and the fact that an administrator mightn't be required +(if users are able to manage resource sharing). The primary disadvantage of +peer networks is the lack of a central control mechanism. Each user controls +access to their own workstation's shared files and printers. In a large scale +network network, such a security policy is difficult to manage without +compromising security. Further, a workstation that is being accessed by peers +can also be slowed down, inconveniencing the user at that workstation. Hence, +its clear that this system is best suited to smaller networks. + diff --git a/LDP/guide/docbook/Linux-Networking/Protocols-and-Standards.xml b/LDP/guide/docbook/Linux-Networking/Protocols-and-Standards.xml index df858d14..5e39c114 100644 --- a/LDP/guide/docbook/Linux-Networking/Protocols-and-Standards.xml +++ b/LDP/guide/docbook/Linux-Networking/Protocols-and-Standards.xml @@ -257,3 +257,373 @@ servers can have network cards bound to multiple protocols. Microsoft's implementation of the IPX protocol, NWLink, also supports the ODI standard. + + + +Appletalk + + +Appletalk is the network architecture/internetworking stack developed +by Apple to work with Macintosh computers. It allows a peer-to-peer +network model which provides basic functionality such as file and printer +sharing. Each machine can simultaneously act as a client and a server, +and the software and hardware necessary are included with every Apple +computer. Appletalk actually supports three network transports: +Ethernet, Token Ring, and a dedicated system called Localtalk. + + + +LocalTalk is traditionally wired in a star or hybrid topology using custom +connectors and STP cable. A popular third-party system allows ordinary phone +cable to be used instead of STP. LocalTalk supports up to 32 node per network. +The implementations of Ethernet and Token Ring (EtherTalk and TokenTalk) +support for more sophisticated networks. Localtalk uses CSMA/CA access method. +Rather than detect collisions as with Ethernet, this method requires nodes to +wait a certain amount of time after detecting an existing signal on the network +before attempting to transmit, avoiding most collisions. + + + +Linux provides full Appletalk networking. Netatalk is a kernel-level +implementation of the AppleTalk Protocol Suite, originally for BSD- +derived systems. It includes support for routing AppleTalk, serving +Unix and AFS filesystems over AFP (AppleShare), serving Unix printers +and accessing AppleTalk printers over PAP. Linux systems just show up +as another Macintosh on the network. + + + +To enable the Appletalk ( AF_APPLETALK ) protocol in the kernel +please add the following options to your kernel configuration. +The Appletalk support has no special device names as it uses +existing network devices. + + + + + Kernel Compile Options: + Networking options ---> + <*> Appletalk DDP + + + + +Appletalk support allows your Linux machine to interwork with Apple +networks. An important use for this is to share resources such as +printers and disks between both your Linux and Apple computers. +Additional software is required, this is called netatalk. Wesley Craig +netatalk@umich.edu represents a team called the `Research Systems Unix +Group' at the University of Michigan and they have produced the +netatalk package which provides software that implements the Appletalk +protocol stack and some useful utilities. The netatalk package will +either have been supplied with your Linux distribution, or you will +have to ftp it from its home site at the University of Michigan + + + +To build and install the package do something like: + + + + + user% tar xvfz .../netatalk-1.4b2.tar.Z + user% make + root# make install + + + + +You may want to edit the `Makefile' before calling make to actually +compile the software. Specifically, you might want to change the +DESTDIR variable which defines where the files will be installed +later. The default of /usr/local/atalk is fairly safe. + + +8.2.1. Configuring the Appletalk software. + + +The first thing you need to do to make it all work is to ensure that +the appropriate entries in the /etc/services file are present. The +entries you need are: + + + + + rtmp 1/ddp # Routing Table Maintenance Protocol + nbp 2/ddp # Name Binding Protocol + echo 4/ddp # AppleTalk Echo Protocol + zip 6/ddp # Zone Information Protocol + + + + +The next step is to create the Appletalk configuration files in the +/usr/local/atalk/etc directory (or wherever you installed the +package). + + + +The first file to create is the /usr/local/atalk/etc/atalkd.conf file. +Initially this file needs only one line that gives the name of the +network device that supports the network that your Apple machines are +on: + + + + + eth0 + + + + +The Appletalk daemon program will add extra details after it is run. + + +8.2.2. Exporting a Linux filesystems via Appletalk. + + +You can export filesystems from your linux machine to the network so +that Apple machine on the network can share them. + + + +To do this you must configure the +/usr/local/atalk/etc/AppleVolumes.system file. There is another +configuration file called /usr/local/atalk/etc/AppleVolumes.default +which has exactly the same format and describes which filesystems +users connecting with guest privileges will receive. + + + +Full details on how to configure these files and what the various +options are can be found in the afpd man page. + + + +A simple example might look like: + + + + + /tmp Scratch + /home/ftp/pub "Public Area" + + + + +Which would export your /tmp filesystem as AppleShare Volume `Scratch' +and your ftp public directory as AppleShare Volume `Public Area'. The +volume names are not mandatory, the daemon will choose some for you, +but it won't hurt to specify them anyway. + + +8.2.3. Sharing your Linux printer across Appletalk. + + +You can share your linux printer with your Apple machines quite +simply. You need to run the papd program which is the Appletalk +Printer Access Protocol Daemon. When you run this program it will +accept requests from your Apple machines and spool the print job to +your local line printer daemon for printing. + + + +You need to edit the /usr/local/atalk/etc/papd.conf file to configure +the daemon. The syntax of this file is the same as that of your usual +/etc/printcap file. The name you give to the definition is registered +with the Appletalk naming protocol, NBP. + + + +A sample configuration might look like: + + + + + TricWriter:\ + :pr=lp:op=cg: + + + + +Which would make a printer named `TricWriter' available to your +Appletalk network and all accepted jobs would be printed to the linux +printer `lp' (as defined in the /etc/printcap file) using lpd. The +entry `op=cg' says that the linux user `cg' is the operator of the +printer. + + +8.2.4. Starting the appletalk software. + + +Ok, you should now be ready to test this basic configuration. There is +an rc.atalk file supplied with the netatalk package that should work +ok for you, so all you should have to do is: + + + + + root# /usr/local/atalk/etc/rc.atalk + + + + +and all should startup and run ok. You should see no error messages +and the software will send messages to the console indicating each +stage as it starts. + + +8.2.5. Testing the appletalk software. + + +To test that the software is functioning properly, go to one of your +Apple machines, pull down the Apple menu, select the Chooser, click on +AppleShare, and your Linux box should appear. + + +8.2.6. Caveats of the appletalk software. + +· You may need to start the Appletalk support before you configure + your IP network. If you have problems starting the Appletalk + programs, or if after you start them you have trouble with your IP + network, then try starting the Appletalk software before you run + your /etc/rc.d/rc.inet1 file. + +· The afpd (Apple Filing Protocol Daemon) severely messes up your + hard disk. Below the mount points it creates a couple of + directories called ``.AppleDesktop'' and Network Trash Folder. + Then, for each directory you access it will create a .AppleDouble + below it so it can store resource forks, etc. So think twice before + exporting /, you will have a great time cleaning up afterwards. + +· The afpd program expects clear text passwords from the Macs. + Security could be a problem, so be very careful when you run this + daemon on a machine connected to the Internet, you have yourself to + blame if somebody nasty does something bad. + +· The existing diagnostic tools such as netstat and ifconfig don't + support Appletalk. The raw information is available in the + /proc/net/ directory if you need it. + +8.2.7. More information + + +For a much more detailed description of how to configure Appletalk for +Linux refer to Anders Brownworth Linux Netatalk-HOWTO page at +thehamptons.com. + + + +Netatalk faq and HOWTO: + + + +· http://thehamptons.com/anders/netatalk/ +· http://www.umich.edu/~rsug/netatalk/ +· http://www.umich.edu/~rsug/netatalk/faq.html + + + + + + +ARCnet + + +ARCnet, developed in 1977, by Datapoint Corporation, is an older standard +that has largely been replaced by Ethernet in current networks. ARCnet, +uses RG-62 coaxial cable in a star, bus, or hybrid physical topology. This +networking scheme supports active and passive hubs, which must be connected +to an active hub. ARCnet requries 93-ohm terminators at the end of bus +cables, and on unused ports of passive hubs. It supports UTP, coaxial, or +fiber-optic cable. The distance between nodes is 400 feet with UTP cable, +and higher for coaxial or fiber-optic cable. + + + +ARCnet uses a token-passing scheme similar to that of token ring. ARCnet +networks support a bandwidth of 2.5 Mbps. Newer standards (ARCnet Plus and +TCNS) support speeds of 20 Mbps and 100 Mbps, but have not really caught on. + + + +ARCNet device names are `arc0e', `arc1e', `arc2e' etc. or `arc0s', +`arc1s', `arc2s' etc. The first card detected by the kernel is +assigned `arc0e' or `arc0s' and the rest are assigned sequentially in +the order they are detected. The letter at the end signifies whether +you've selected ethernet encapsulation packet format or RFC1051 packet +format. + + + + + Kernel Compile Options: + + Network device support ---> + [*] Network device support + <*> ARCnet support + [ ] Enable arc0e (ARCnet "Ether-Encap" packet format) + [ ] Enable arc0s (ARCnet RFC1051 packet format) + + + + +Once you have your kernel properly built to support your ethernet card +then configuration of the card is easy. + + + +Typically you would use something like: + + + + + root# ifconfig arc0e 192.168.0.1 netmask 255.255.255.0 up + root# route add -net 192.168.0.0 netmask 255.255.255.0 arc0e + + + + +Please refer to the /usr/src/linux/Documentation/networking/arcnet.txt +and /usr/src/linux/Documentation/networking/arcnet-hardware.txt files +for further information. + + + +ARCNet support on Linux was developed by Avery Pennarun, apenwarr@foxnet.net. + + + + + + +ATM + + +ATM (Asynchronous Transfer Mode), is a high speed packet switching format +that supports up to 622 Mbps. ATM can be used with T1 and T3 lines, FDDI, +and SONET OC1 and OC3 lines. ATM uses a technology called cell switching. +Data is sent in 53-byte packets called cells. Because packets are small and +uniform in size, they can be quickly routed by hardware switches. ATM uses +a virtual circuit between connection points for high reliability over +high-speed links. + + + +ATM support for Linux is currently in pre-alpha stage. There is an +experimental release, which supports raw ATM connections (PVCs and +SVCs), IP over ATM, LAN emulation.... + + + +The Linux ATM-Linux home page is at, + + + +Werner Almesberger is managing a +project to provide Asynchronous Transfer Mode support for Linux. +Current information on the status of the project may be obtained from, +http://lrcwww.epfl.ch + + + diff --git a/LDP/guide/docbook/Linux-Networking/Sources.xml b/LDP/guide/docbook/Linux-Networking/Sources.xml index ccd41ec7..e9f56b11 100644 --- a/LDP/guide/docbook/Linux-Networking/Sources.xml +++ b/LDP/guide/docbook/Linux-Networking/Sources.xml @@ -1181,8 +1181,10 @@ found [http://www.gnu.org/copyleft/fdl.html] here. Documentation License. You should have received a copy along with it. If not, it is available from http://www.fsf.org/licenses/fdl.html. + Linux-Filesystem-Hierarchy, Binh Nguyen, www.tldp.org/guides.html + Linux-Dictionary, Binh Nguyen, www.tldp.org/guides.html - + Computer-Dictionary, Binh Nguyen, www.tldp.org/guides.html