diff --git a/LDP/howto/docbook/Battery-Powered.sgml b/LDP/howto/docbook/Battery-Powered.sgml index eef233ae..674b3a9c 100644 --- a/LDP/howto/docbook/Battery-Powered.sgml +++ b/LDP/howto/docbook/Battery-Powered.sgml @@ -13,22 +13,22 @@ - 2.3 - 2003-06-29 + 2.31 + 2003-07-30 drl - Updated document content and structure + Minor updates 2.0 2002-10-08 drl - Major updates and conversion to DocBook SGML + Major updates and conversion to SGML 1.0 1997-12-21 hm - Initial draft by Hanno Muller <kontakt@hanno.de> + Initial draft by Hanno Muller @@ -48,7 +48,8 @@ different types of batteries available. Advanced Power Management (APM) or Advanced Configuration and Power Interface (ACPI). ACPI is the newer of the two technologies and puts power management in the hands of the operating system, allowing for more intelligent power -management than is possible with BIOS controlled APM. This is most useful for battery-powered laptops. +management than is possible with BIOS controlled APM. This is most useful for +battery-powered laptops. You can only have one power management interface in control of your machine at a time, so it's important you decide which method best suits your situation. @@ -58,68 +59,123 @@ important you decide which method best suits your situation. Advanced Power Management (APM) allows your computer's BIOS to control your system's power management without the knowledge of the operating system. -The advantages to APM under Linux are that it's stable, well supported by Linux vendors and has a solid history behind it. -However, not much development has been done with it over the past few years. +The advantages to APM under Linux are that it's stable, well supported by +Linux vendors and has a solid history behind it. +However, not much development has been done with it over the past few +years. -To use it, you'll need to enable APM in the kernel. Most of the other APM -options exist as work-arounds for known problems with specific hardware devices, +To use it, you'll need to enable APM in the kernel: + + + [*] Power Management support + <*> Advanced Power Management BIOS support + [ ] Ignore USER SUSPEND (NEW) + [ ] Enable PM at boot time (NEW) + [ ] Make CPU Idle calls when idle (NEW) + [ ] Enable console blanking using APM (NEW) + [ ] RTC stores time in GMT (NEW) + [ ] Allow interrupts during APM BIOS calls (NEW) + [ ] Use real mode APM BIOS call to power off (NEW) + + + + + +Most of the other APM +options exist as work-arounds for known problems with specific hardware +devices, so you'll probably only want to enable the first one (CONFIG_APM). Advanced Power Management BIOS support (CONFIG_APM): - You'll need to enable this in order to do anything useful - with APM. User-space programs will receive notification of - APM events (e.g., battery status change) and a /proc/apm - device will provide you with battery status information. + You'll need to enable this in order to do anything +useful + with APM. User-space programs will receive +notification of + APM events (e.g., battery status change) and a +/proc/apm + device will provide you with battery status +information. Ignore USER SUSPEND (CONFIG_APM_IGNORE_USER_SUSPEND): - This is a workaround for NEC Versa M notebooks. + This is a workaround for NEC Versa M +notebooks. Enable PM at boot time (CONFIG_APM_DO_ENABLE): Although it sounds nifty, most machines do - not require this feature to be enabled and in fact can hang + not require this feature to be enabled and in fact can +hang some systems at boot time. - Make CPU Idle calls when idle (CONFIG_APM_CPU_IDLE): On some machines, - this option provides increased power savings. On others, it will - hang the system at boot time. Use with caution. - Enable console blanking using APM (CONFIG_APM_DISPLAY_BLANK): - Instead of blanking the virtual console actually turn off the - screen. This won't work with X-Windows and actually can cause more + Make CPU Idle calls when idle (CONFIG_APM_CPU_IDLE): +On some machines, + this option provides increased power savings. On +others, it will + hang the system at boot time. Use with +caution. + Enable console blanking using APM +(CONFIG_APM_DISPLAY_BLANK): + Instead of blanking the virtual console actually turn +off the + screen. This won't work with X-Windows and actually +can cause more problems that it solves. - RTC stores time in GMT (CONFIG_APM_RTC_IS_GMT): If you want to - store GMT (Greenwich Mean Time) in your RTC (Real Time Clock), + RTC stores time in GMT (CONFIG_APM_RTC_IS_GMT): If you +want to + store GMT (Greenwich Mean Time) in your RTC (Real Time +Clock), say yes here. - Allow interrupts during APM BIOS calls (CONFIG_APM_ALLOW_INTS): - This is a workaround for some IBM Thinkpads that hang while + Allow interrupts during APM BIOS calls +(CONFIG_APM_ALLOW_INTS): + This is a workaround for some IBM Thinkpads that hang +while suspending. - Use real mode APM BIOS call to power off (CONFIG_APM_REAL_MODE_POWER_OFF): - This is a workaround for a number of broken BIOSes. If your computer - crashes instead of powering off properly, turn this on. + Use real mode APM BIOS call to power off +(CONFIG_APM_REAL_MODE_POWER_OFF): + This is a workaround for a number of broken BIOSes. +If your computer + crashes instead of powering off properly, turn this +on. You'll want to install the APM daemon from http://www.worldvisions.ca/~apenwarr/apmd/ and configure your system startup scripts to activate it on boot: - -# Start the APM daemon if APM is enabled in the kernel +# Start the APM daemon if it exists and if APM is enabled in the kernel if [ -x /usr/sbin/apmd -a -d /proc/apm ]; then if cat /proc/apm 1> /dev/null 2> /dev/null ; then echo "Starting APM daemon: /usr/sbin/apmd" /usr/sbin/apmd fi fi - The APM daemon is actually made up of three primary programs: - apmd - handles power management tasks - apm - a command-line tool to print the current battery status or suspend the computer - xapm - a simple battery meter for X + apmd - handles power management +tasks + apm - a command-line tool to print +the current battery status or suspend the computer + xapm - a simple battery meter for +X If you're looking for a simple, "works out of the box" approach to power management for your Laptop, APM is definitely the way to go. + +A simple script to notify you how much battery time is remaining can be +added to your ~/.profile file: + + +if [ -f /proc/apm ]; then + DUMMY=`cat /proc/apm | cut -d" " -f 7` + # Don't display when fully charged + if [ "$DUMMY" != "99%" ]; then + LEVEL=`cat /proc/apm | sed -e "s/^.*% //"` + echo "Battery at $DUMMY ($LEVEL)" + fi +fi + + @@ -127,41 +183,62 @@ management for your Laptop, APM is definitely the way to go. Advanced Configuration and Power Interface (ACPI) is the successor to APM, which places the responsibility of power management away from the BIOS and into the hands of the operating system. -ACPI Linux is newer than APM Linux, more flexible in responding to power management events, has seen -much more development as of late, and as a result of all this is prone to its own share of bugs from +ACPI Linux is newer than APM Linux, more flexible in responding to power +management events, has seen +much more development as of late, and as a result of all this is prone to its +own share of bugs from time to time. -If you're into cutting-edge development and are not intimidated with kernel -builds and applying patches against source code, ACPI is worth consideration. +If you're into cutting-edge development and are not intimidated with +kernel +builds and applying patches against source code, ACPI is worth +consideration. There are two parts to ACPI under Linux: The ACPI driver built into the -kernel itself, and the ACPI daemon (ACPID). ACPID in its current incarnation is +kernel itself, and the ACPI daemon (ACPID). ACPID in its current incarnation +is pretty simple: monitor /proc/acpi/event and do things in response. Even if you don't load the daemon, you'll still get the benefit of ACPI features built into the kernel such as processor thermal support. You can determine which version -of the ACPI driver you are using, along with supported suspend states, by using: +of the ACPI driver you are using, along with supported suspend states, by +using: bash $ cat /proc/acpi/info -version: 20030619 -states: S0 S1 S3 S4 S4Bios S5 +version: 20030619 +states: S0 S1 S3 S4 S4 S5 -ACPI development is progressing at a steady rate, so you might want to consider +ACPI development is progressing at a steady rate, so you might want to +consider patching -your kernel against any recent updates to the kernel-level ACPI code. Once you have downloaded the +your kernel against any recent updates to the kernel-level ACPI code. Once +you have downloaded the patch for your specific kernel, you can patch it with something like: -bash$ gunzip acpi-[version]-[kernel].diff.gz -bash# mv acpi-[version]-[kernel].diff /usr/src/linux-[version] +bash$ gunzip acpi-[version-kernel].diff.gz bash# cd /usr/src/linux-[version] -bash# patch -p1 < acpi-[version]-[kernel].diff +bash# patch -Np1 -i ../acpi-[version-kernel].diff -You'll want to recompile your kernel after this, of course. +You'll want to recompile your kernel after this, of course: + + + [*] ACPI Support + [ ] CPU Enumeration Only + <*> AC Adapter + <*> Battery + <*> Button + <*> Fan + <*> Processor + <*> Thermal Zone + < > ASUS Laptop Extras + < > Toshiba Laptop Extras + [*] Debug Statements + You'll also want to install the ACPID daemon from http://sourceforge.net/project/showfiles.php?group_id=33140 @@ -174,7 +251,8 @@ if [ -x /usr/sbin/acpid -a -d /proc/acpi ]; then fi -A bit of history... Microsoft was the first vendor to implement ACPI. This is both good and +A bit of history... Microsoft was the first vendor to implement ACPI. +This is both good and bad. It is good because when you buy a system, you can pretty much guarantee that it has passed Microsoft's hardware compliance tests, including the test of its ACPI implementation. However, these tests come up short in that they @@ -183,7 +261,8 @@ Microsoft's implementation of ACPI. When that same machine is used with Linux, some classes of errors that did not manifest themselves under Windows may become apparent. To protect against this problem, the Linux ACPI driver maintains a "bad BIOS" blacklist of known BIOS's that are known to not be ACPI -compliant, and as a result will refuse to enable ACPI if your system is listed. +compliant, and as a result will refuse to enable ACPI if your system is +listed. Many manufacturers are now validating that their systems run on Linux. However, they use major Linux distributions with the default kernel. This @@ -193,9 +272,19 @@ kernel. This presents a slight dilemma in that Linux distributions want to ship kernels that run on as many systems as possible, but there have been some positive moves in this area lately. -To conserve energy while remaining quickly available, ACPI-compatible PCs may enter system sleep states. The ACPI specification defines five of these states, known as S-states. Unlike processor sleep states, no work is done by the system under S-states. Each state introduces greater power savings but requires commensurately more time to awaken and begin performing work. These are patterned on system states from the APM standard, a predecessor of ACPI. +To conserve energy while remaining quickly available, ACPI-compatible +PCs may enter system sleep states. The ACPI specification defines five of +these states, known as S-states. Unlike processor sleep states, no work is +done by the system under S-states. Each state introduces greater power savings +but requires commensurately more time to awaken and begin performing work. +These are patterned on system states from the APM standard, a predecessor of +ACPI. -Full details on ACPI sleep states are available at http://acpi.sourceforge.net/documentation/sleep.html. Processor states are described at http://acpi.sourceforge.net/documentation/processor.html. +Full details on ACPI sleep states are available at +http://acpi.sourceforge.net/documentation/sleep.html. +Processor states are described at +http://acpi.sourceforge.net/documentation/processor.html. + For more specific background information on ACPI itself, you can visit the ACPI website at @@ -205,56 +294,156 @@ the ACPI website at APM vs. ACPI: Which one? -There are currently two competing standards for providing power management: APM and ACPI. Both cannot be used at the same time, so which one is best for your situation? If you have a relatively recent (>2.4.20) kernel and are not intimidated by kernel builds and patching source code, you'll find many benefits with the flexibility of ACPI. If you just want to enable generic power management, or are using an older machine, choose APM. Neither method spins down idle hard drives; use hdparm for that instead. Either way, your system's BIOS must correctly support the power management scheme you'd like to use as well; if your system does not fully support either standard, some of the power management options might crash your system and/or cause data loss. You have been warned! +There are currently two competing standards for providing power +management: APM and ACPI. Both cannot be used at the same time, so which one +is best for your situation? If you have a relatively recent (>2.4.20) kernel +and are not intimidated by kernel builds and patching source code, you'll find +many benefits with the flexibility of ACPI. If you just want to enable +generic power management, or are using an older machine, choose APM. Neither +method spins down idle hard drives; use hdparm for that instead. Either way, +your system's BIOS must correctly support the power management scheme you'd +like to use as well; if your system does not fully support either standard, +some of the power management options might crash your system and/or cause data +loss. You have been warned! -Even if you don't enable power management on your x86-laptop, Linux will always issue the HLT instruction to your +Even if you don't enable power management on your x86-laptop, Linux will +always issue the HLT instruction to your processor whenever nothing needs to be done source/arch/i386/kernel/process.c. -Many Microsoft Windows CPU cooling program use this technique. This results in lowering the power consumption of your CPU. Note that the system doesn't power down when it receives the HLT instruction; it just stops executing instructions until there is an interrupt. - -Some system manufacturers may have omitted the pre-ACPI tables used for -SMP configuration. In this case, ACPI is required - -Andrew Grover. - -If a system supports -HyperThreading, it must use ACPI tables to discover all the virtual processors -present. IA64 machines require ACPI, and NUMA servers are starting to require -it for proper initialization as well. +Many Microsoft Windows CPU cooling program use this technique. This results +in lowering the power consumption of your CPU. Note that the system doesn't +power down when it receives the HLT instruction; it just stops executing +instructions until there is an interrupt. There is generally no advantage to -enabling either type of power management on servers or workstations that do not fall into +enabling either type of power management on servers or workstations that do +not fall into these categories. + + +SMP, Hyper-Threading, IA64 & NUMA + +Some SMP system manufacturers may have omitted the pre-ACPI tables used +for SMP configurations. In this case, ACPI is required. + +If you have a newer system that supports +Hyper-Threading, +you will need to enable ACPI (and, of course, SMP). Without it, your Linux system +may be unable to discover and initialize all of the virtual processors. + +IA64 machines require ACPI as well. Additionally, NUMA servers are +starting to require it for proper initialization. + + + +DPMS +DPMS (Display Power Management Signaling) is a standard to +reduce power consumption in monitors. Typically, both the monitor and the video card +must support the DPMS standard in order to receive any benefit from it. DPMS specifies +four modes of operation (in order of increasing power savings): "Normal", "Standby", +"Suspend" and "Off". Two signal lines, "Horizontal Sync" and "Vertical Sync" provide +a method for signaling these four different states to a DPMS monitor. - -Power Management Techniques -The basic goal of any power management technique is to reduce an entity's consumption. In the case of laptop power management, our focus is on decreasing CPU and hard drive usage. To make things a bit simpler, this is broken down into obvious, semi-obvious, and non-obvious techniques. Granted, your mileage may vary. +A good technical resource on DPMS is available at +http://webpages.charter.net/dperr/dpms.htm. + + + +Normal +Normal means just that -- the monitor is fully powered and on. +LCD laptop panels and LCD flat screens use considerably less power than traditional CRT +monitors. + + + +Standby +Standby is used to describe a very minor power +savings level. This setting usually involves +blanking the screen by turning off the electron (RGB) gun. However, the +power supply is left on and the tube filaments energized. +When you need to use the monitor again, the monitor will come back on very +quickly. +This option requires DPMS monitor and video card support along with enabling +DPMS in XFree86. +Standby is sometimes referred to as hsync suspend mode +since the horizontal sync signal +is turned off to signal this power management state to a DPMS monitor. + -Suspend to Disk +Suspend +Suspend is used to describe a very strong low power +state. This setting usually involves the same +power conservation as Standby however in addition the power +supply to the monitor is turned off. +This option requires DPMS monitor and video card support along with enabling +DPMS in XFree86. +Suspend is sometimes referred to as vsync suspend mode +since the vertical sync signal +is turned off to signal this power management state to a DPMS monitor. + -Suspend to Disk (S2D) is still an elusive task under Linux. The main project at the moment is swsusp, available at http://sourceforge.net/projects/swsusp. It's still in beta and requires manual patching of the kernel source. + +Off +Off usually means just that -- the computer monitor +is turned off. Usually, a small +auxiliary circuit stays on to monitor the signals from the computer to turn +the monitor back on when data needs to be displayed to the screen. +Obviously, this keeps power consumption to a bare minimum (if not zero). +While the power saving is substantial, to reactivate the monitor may take +several seconds. +This option requires DPMS monitor and video card support along with enabling +DPMS in XFree86. +Both the horizontal and vertical sync signals are turned off to signal this +power management state to a DPMS monitor. + + + + +Power Management Methods +The basic goal of any power management technique is to reduce an +entity's consumption. In the case of laptop power management, our focus is on +decreasing CPU and hard drive usage. To make things a bit simpler, this is +broken down into obvious, semi-obvious, and +non-obvious techniques. Granted, your mileage may +vary. + + +swsusp(8) +Suspend to Disk (S2D) is still an elusive task under Linux. The main +project at the moment is swsusp, available at +http://sourceforge.net/projects/swsusp. +It's still fairly new and requires a bit of configuration to enable it. -hdparm Tuning -hdparm is a Linux shell utility that can be used to spin down and improve the performance -of various ATA/IDE drives. If it's not included with your system, you can fetch the source from +hdparm(8) +hdparm is a Linux shell utility that can be used to +spin down and improve the performance +of various ATA/IDE drives. If it's not included with your system, you can +fetch the source from http://freshmeat.net/redir/hdparm/4062/url_homepage/hardware. -For example, the following provides 32-bit IO support with sync (-c3), DMA support (-d1), Advanced Power Management (-B128), write-caching -(-W1), disk spin down after five minutes (-S60). gains me tremendous performance with added power savings. Note that your mileage may vary, and you'll want to adjust this for your specific system to prevent data loss (especially the -B and -m flags!). +For example, the following provides 32-bit IO support with sync (-c3), DMA +support (-d1), Advanced Power Management (-B128), write-caching +(-W1), disk spin down after five minutes (-S60). gains me tremendous +performance with added power savings. Note that your mileage may vary, and +you'll want to adjust this for your specific system to prevent data loss +(especially the -B and -m flags!). -In the following example, we run some read/write benchmarks of our hard drive before and after using hdparm. -Note that while our cache reads remain about the same, our actual physical reads from the drive increase tremendously! -If you like living on the edge, you can play with the -m, -c, -B, and -u switches with caution (see the man page). +In the following example, we run some read/write benchmarks of our hard +drive before and after using hdparm. +Note that while our cache reads remain about the same, our actual physical +reads from the drive increase tremendously! +If you like living on the edge, you can play with the -m, -c, -B, and -u +switches with caution (see the man page). bash# hdparm -tT /dev/hda @@ -269,30 +458,39 @@ Timing buffered disk reads: 72 MB in 3.05 seconds = 23.58 MB/sec - -syslog Tuning -Examine your /etc/syslog.conf file for unnecessary logging activity + +sysklogd(8) +Examine your /etc/syslog.conf file for unnecessary +logging activity and to optimize its performance. -If you don't want to log any system activity, consider disabling syslogd and klogd entirely or, +If you don't want to log any system activity, consider disabling syslogd and +klogd entirely or, at the very least, minimize the amount of logging your system performs. -You can also prefix each entry with the minus sign (-) to omit syncing the file after each log entry +You can also prefix each entry with the minus sign (-) to omit syncing the +file after each log entry syslogd.c. -For example, this will log anything with a priority of info or higher, but lower than -warning, to /var/adm/messages or /var/adm/mail -without needing to sync to disk after each write. Since we want to keep all messages with a priority of -warning, this will be logged to a different file without disabling +For example, this will log anything with a priority of +info or higher, but lower than +warning, to /var/log/messages or +/var/log/mail +without needing to sync to disk after each write. Since we want to keep all +messages with a priority of +warning, this will be logged to a different file without +disabling disk syncing (to prevent data loss in the event of a system crash). -*.warning /var/adm/syslog +*.warning /var/log/syslog *.info;*.!warning;mail.none -/var/log/messages mail.info;mail.!warning -/var/log/mail -Another item to be aware of is the -- MARK -- messages that syslogd(8) writes. -This will affect your hard drive inactivity settings. You can simply disable this by running syslogd(8) with: +Another item to be aware of is the -- MARK -- +messages that syslogd(8) writes. +This will affect your hard drive inactivity settings. You can simply disable +this by running syslogd(8) with: @@ -309,29 +507,25 @@ fi -XF86Config Tuning -There are essentially two different types of screen blanking that can be performed under X-Windows: BlankTime and DPMS. -The first is simply a fake "blanking" effect that doesn't actually save any power. The others are specific only to -DPMS-compliant monitors, and must be specifically enabled to take effect. They are located in your XF86Config +XFree86 +There are essentially two different types of screen blanking that can be +performed under XFree86: BlankTime and DPMS. +The first is simply a fake "blanking" effect that doesn't actually save any +power. The others are specific only to +DPMS-compliant monitors, and must be specifically enabled to take effect. +They are located in your XF86Config file, which normally resides in /etc/X11/XF86Config. -DPMS (Display Power Management Signaling) is a standard to reduce power consumption in monitors -http://www.vesa.org/vbe3.pdf. - -Typically, both the monitor and the video card must support the DPMS standard in order to receive any -benefit from it. DPMS specifies four modes of operation (in order of increasing power savings): -"Normal", "Standby", "Suspend" and "Off". Two signal lines, "Horizontal Sync" and -"Vertical Sync" provide a method for signaling these four different states to a DPMS monitor. - -If you have a DPMS-compliant monitor, you might want to try enabling support for it under the -Monitor section of your XF86Config file: +If you have a DPMS-compliant monitor, you might want to try enabling +support for it under the +Monitor section of your XF86Config +file: Section "Monitor" - [... other values here ...] Option "DPMS" EndSection @@ -343,118 +537,146 @@ following items in the ServerLayout section. Section "ServerLayout" - Option "BlankTime" "10" # Blank the screen in 10 minutes (Fake) - Option "StandbyTime" "20" # Turn off screen in 20 minutes (DPMS) - Option "SuspendTime" "30" # Full hibernation in 30 minutes (DPMS) - Option "OffTime" "40" # Turn off DPMS monitor (DPMS) + Option "BlankTime" "10" # Blank the screen in 10 minutes + Option "StandbyTime" "20" # Turn off screen in 20 minutes + Option "SuspendTime" "30" # Full hibernation in 30 minutes + Option "OffTime" "40" # Turn off DPMS monitor EndSection -BlankTime -is not actually a power saving level at all. The screen is sent -a "fake" blanking effect and defaults to activate after 10 minutes. Alternately, it can indicate the number of -minutes until the screensaver should activate. It has nothing to do with DPMS. +It's worth noting that BlankTime is not actually a +power saving level at all. The screen is sent +a "fake" blanking effect and defaults to activate after 10 minutes. +Alternately, it can indicate the number of +minutes until the screensaver should activate. It has nothing to do with +DPMS. -StandbyTime -is a very minor power saving level. This setting usually involves -blanking the screen by turning off the electron (RGB) gun. However, the -power supply is left on and the tube filaments energized. -When you need to use the monitor again, the monitor will come back on very quickly. -This option requires DPMS monitor/video-card support and defaults to 20 minutes under X-Windows. -Also known as hsync suspend mode, since the horizontal sync signal -is turned off to signal this power management state to a DPMS monitor. - -SuspendTime -is a very strong low power alternative. This setting usually involves the same -power conservation as StandbyTime, however in addition the power supply is turned off. -This option requires DPMS monitor/video-card support and defaults -to 30 minutes under X-Windows. Also known as vsync suspend mode, since the vertical sync signal -is turned off to signal this power management state to a DPMS monitor. - -OffTime -usually means just that. The computer monitor is turned off. A small -auxiliary circuit stays on to monitor the signals from the computer to turn -the monitor back on when data needs to be displayed to the screen. -Obviously, this keeps power consumption to a bare minimum (zero). -While the power saving is substantial, to reactivate the monitor may take up to 8-10 seconds. -This option requires DPMS monitor/video-card support and defaults to 40 minutes under -X-Windows. Both the horizontal and vertical sync signals are turned off to signal this power -management state to a DPMS monitor. - -After activating your changes and restarting X-Windows, you might want to examine your +After activating your changes and restarting X-Windows, you might want +to examine your logfile to see if your video card has any problems with your changes: -$ egrep "^\(WW|EE\)" /var/log/XFree86.0.log +bash$ egrep "^\(WW|EE\)" /var/log/XFree86.0.log -There may be additional options that you can enable for your specific video card/chip driver; see the -XFree86 Documentation website for specifics. +There may be additional options that you can enable for your specific +video card/chip driver; see the +XFree86 Documentation +website for specifics. -Of course, all of this can also be activated "on-the-fly" by using xset(1). -If you don't have access to your system's XF86Config file, a good place to put these commands would be in -your ~/.Xsession or ~/.xinitrc file. +Of course, all of this can also be activated "on-the-fly" by using +xset(1). +If you don't have access to your system's XF86Config file, +a good place to put these commands would be in +your ~/.Xsession or ~/.xinitrc +file. -$ xset -dpms # Disable DPMS -$ xset +dpms # Enable DPMS -$ xset s off # Disable screen blanking -$ xset s 150 # Blank the screen after 150 seconds -$ xset dpms 300 600 900 # Set standby, suspend, & off times (in seconds) -$ xset dpms force standby # Immediately go into standby mode -$ xset dpms force suspend # Immediately go into suspend mode -$ xset dpms force off # Immediately turn off the monitor -$ xset -q # Query current settings +bash$ xset -dpms # Disable DPMS +bash$ xset +dpms # Enable DPMS +bash$ xset s off # Disable screen blanking +bash$ xset s 150 # Blank the screen after 150 seconds +bash$ xset dpms 300 600 900 # Set standby, suspend, & off times (in seconds) +bash$ xset dpms force standby # Immediately go into standby mode +bash$ xset dpms force suspend # Immediately go into suspend mode +bash$ xset dpms force off # Immediately turn off the monitor +bash$ xset -q # Query current settings -If instead you're using the Linux console (not X-Windows), you'll want to use setterm(1): +If instead you're using the Linux console (not X-Windows), you'll want +to use setterm(1): -$ setterm -blank 10 # Blank the screen in 10 minutes -$ setterm -powersave on # Put the monitor into VESA power saving mode -$ setterm -powerdown 20 # Set the VESA powerdown to 20 minutes +bash$ setterm -blank 10 # Blank the screen in 10 minutes +bash$ setterm -powersave on # Put the monitor into VESA power saving mode +bash$ setterm -powerdown 20 # Set the VESA powerdown to 20 minutes + +KDE 3.1 + + +Display Power Control +Assuming you've configured XFree86 to support DPMS, simply run +kcontrol and choose Power +Control/Display Power Control. From here, you +can configure Standby, Suspend, and Power off settings for your monitor. + + + +Laptop Battery +Assuming you've configured your kernel to support either APM or ACPI, +simply run kcontrol and choose Power +Control/Laptop Battery. From here, you can +configure the various settings for your system based on the level of battery +power remaining. + +It's worth noting that some people running ACPI tend to see the +following message: + + +Your computer seems to have a partial ACPI installation. ACPI was probably +enabled, but some of the sub-options were not - you need to enable at least +'AC Adaptor' and 'Control Method Battery' and then rebuild your kernel. + + +If you see this, either ACPI is not installed or, more likely, KDE does +not recognize your particular Linux ACPI Subsystem. If patching the kernel +with any ACPI updates does not resolve this, you must either not use this KDE +function or, alternately, revert back to using APM. + + + + Energy Star -Energy Star is a United States government-backed program +Energy Star is a United +States government-backed program to promote energy efficiency standards. Of interest: An ENERGY STAR qualified computer, in sleep mode, - uses 70% less electricity than computers without power management features. + uses 70% less electricity than computers without power +management features. An ENERGY STAR qualified monitor, in sleep mode, - uses 90% less electricity than monitors without power management features. + uses 90% less electricity than monitors without power +management features. -Typically, Energy Star savings is accomplished by other power management settings and is not, in and of itself, +Typically, Energy Star savings is accomplished by other power management +settings and is not, in and of itself, a power management technique. -Swapfile Tuning -Consider disabling your swap file in /etc/fstab to reduce hard drive access. +Swap File +Consider disabling your swap file in /etc/fstab to +reduce hard drive access. If you've got lots of memory, this is definitely the way to go. -One way to tell if you need your swap file is to enable it, use your system for a period of time, +One way to tell if you need your swap file is to enable it, use your system +for a period of time, and examine /proc/meminfo and /proc/swaps -to determine how much free memory you've got on average, and whether or not your swap file is even being utilized. +to determine how much free memory you've got on average, and whether or not +your swap file is even being utilized. -For example, today I've compiled several intensive programs and have been running my laptop for about eight hours straight. +For example, today I've compiled several intensive programs and have +been running my laptop for about eight hours straight. A simple examination of my system reveals: bash$ cat /proc/swaps -Filename Type Size Used Priority +Filename Type Size Used +Priority /dev/hda3 partition 136544 0 -1 bash$ cat /proc/meminfo @@ -485,21 +707,28 @@ HugePages_Free: 0 Hugepagesize: 4096 kB -Given this, I'd opt to disable my swapfile if this is any indicator of my future usage. +Given this, I'd opt to disable my swapfile if this is any indicator of +my future usage. -/tmp Tuning -Compile your kernel with tmpfs (temporary file system) enabled and mount your /tmp directory using it. -The useful bit here is that nothing will be written to your hard drive on this mount point as it will act like -a RAM disk (however nothing will be saved either). The advantage of tmpfs over the more traditional ramfs is -that it lives in the kernel internal cache and grows and shrinks to accommodate the files placed there. -See your kernel's Documentation/filesystems/tmpfs.txt for full information. If you don't specify a maximum +tmpfs +Compile your kernel with tmpfs (temporary file system) enabled and mount +your /tmp directory using it. +The useful bit here is that nothing will be written to your hard drive on this +mount point as it will act like +a RAM disk (however nothing will be saved either). The advantage of tmpfs +over the more traditional ramfs is +that it lives in the kernel internal cache and grows and shrinks to +accommodate the files placed there. +See your kernel's Documentation/filesystems/tmpfs.txt for full information. +If you don't specify a maximum size, it will default to a ceiling limit of half your available memory. -An example /etc/fstab with 100MB temporary ram file mounted on /tmp would look like: +An example /etc/fstab with 100MB temporary ram file mounted on /tmp would look +like: - tmpfs /tmp tmpfs size=100m,mode=1777 0 0 +tmpfs /tmp tmpfs size=100m,mode=1777 0 0 @@ -510,26 +739,31 @@ An example /etc/fstab with 100MB temporary ram file mounted on /tmp would look l Modifying /proc/sys/vm/bdflush allows a user to specify under what circumstances dirty buffers are flushed to disk, how many such -buffers exist, etc. Details are in linux_src_tree/Documentation/sysctl/vm.txt (thanks to Marc Liberatore for pointing this out). +buffers exist, etc. Details are in linux_src_tree/Documentation/sysctl/vm.txt +(thanks to Marc Liberatore for pointing this out). Boot your system and list the currently loaded modules with lsmod. Anything listed here most likely needs to be loaded on a regular basis; compiling these in as part of your kernel rather than as loadable modules may help to decrease the amount of time they must be loaded from disk, and to a -very minor degree, decrease the amount of disk access required to start your system. +very minor degree, decrease the amount of disk access required to start your +system. Examine your crontab settings to see if anything is being run on a regular basis. Comment out any unnecessary items. Don't forget to examine -every user's crontab, including the user 'nobody'. If you don't need to schedule +every user's crontab, including the user 'nobody'. If you don't need to +schedule any background activity, consider disabling crond alltogether. The same advice goes for atd. If you run httpd to test and/or develop web pages, try altering the values of MinSpareServers and StartServers to 1. Don't define any CustomLogging or at least increase the value of LogLevel to warn. If you're -really sure of yourself, you can change the ErrorLog directive to point to /dev/null. +really sure of yourself, you can change the ErrorLog directive to point to +/dev/null. -Consider creating a power-saving script that will immediately take your laptop +Consider creating a power-saving script that will immediately take your +laptop into low-power mode: @@ -545,17 +779,29 @@ fi -Additionally, it's worth considering anything in the following areas: +Additionally, it's worth considering anything in the following +areas: -Adjust your system's BIOS settings to decrease or turn off your display's backlight. -Adjust your system's BIOS settings to reduce the CPU clock speed while on battery. -Avoid using PCMCIA devices while on battery. Better yet, eject your PCMCIA cards when not in use. -Avoid using external devices with your computer while on battery. -This includes printers, external monitors, zip drives, and portable cameras. -Avoid using built-in devices while on battery. This includes cdroms and floppy drives. -Use simple software. A full blown multimedia application will create a lot more system load and disk activity than a small simple word processor -Use a simple window manager. While Gnome and KDE are nice, the extra time it takes to load and run is not worth it while on -battery power. One nifty idea is to use a different xinitrc script to launch a different, more simple window manager based on +Adjust your system's BIOS settings to decrease or turn off +your display's backlight. +Adjust your system's BIOS settings to reduce the CPU clock +speed while on battery. +Avoid using PCMCIA devices while on battery. Better yet, +eject your PCMCIA cards when not in use. +Avoid using external devices with your computer while on +battery. +This includes printers, external monitors, zip drives, and portable +cameras. +Avoid using built-in devices while on battery. This includes +cdroms and floppy drives. +Use simple software. A full blown multimedia application will +create a lot more system load and disk activity than a small simple word +processor +Use a simple window manager. While Gnome and KDE are nice, the +extra time it takes to load and run is not worth it while on +battery power. One nifty idea is to use a different +xinitrc script to launch a different, more simple window +manager based on whether or not your system is on battery power. @@ -564,17 +810,22 @@ whether or not your system is on battery power. Power Saving Myths -It used to be beneficial to recompile the Linux PCMCIA drivers to allow the slots to have APM power support. However, most of the functionality of these drivers are now built into the kernel itself. +It used to be beneficial to recompile the Linux PCMCIA drivers to allow +the slots to have APM power support. However, most of the functionality of +these drivers are now built into the kernel itself. If you're interested in specifics, the PCMCIA project page is available at http://sourceforge.net/projects/pcmcia-cs/. -Some people believe that APM offers better power savings over ACPI, and vice-versa. While their power management -techniques differ, in actual battery-usage tests, both reportedly perform about the same. +Some people believe that APM offers better power savings over ACPI, and +vice-versa. While their power management +techniques differ, in actual battery-usage tests, both reportedly perform +about the same. Contrary to popular belief, Lithium Ion (see below) batteries do suffer from a memory effect. -Luckily, the effect is not large over the lifespan of a typical battery (3-4 years). Anyone who tells you different +Luckily, the effect is not large over the lifespan of a typical battery (3-4 +years). Anyone who tells you different is selling something. @@ -600,7 +851,8 @@ weeks. As this battery contains cadmium, a toxic material, it should always be recycled or disposed of properly. NiCad batteries, and to a some degree NiMH batteries, suffer from what's -called the memory effect. Memory Effect means that if a battery is +called the memory effect. Memory Effect means that if a +battery is repeatedly only partially discharged before recharging, the battery will forget that it can further discharge. The best way to prevent this situation is to fully charge and discharge your battery on a regular basis. @@ -624,7 +876,7 @@ bulk or weight. Lithium Ion (Li-ion) Lithium Ion (Li-ion) are the new standard for portable power. Li-ion batteries produce the same energy as NiMH but weighs approximately 20%-35% -less. They do not suffer from the memory effect unlike their NiMH and Ni-Cd +less. They do not suffer significantly from the memory effect unlike their NiMH and Ni-Cd counterparts. Their substances are non-hazardous to the 0. Because lithium ignites very easily, they require special handling. Unfortunately, few consumer recycling programs have been established for Li-ion batteries at @@ -659,13 +911,15 @@ against voltage peaks from your ac outlet. As the manufacturers change the shapes of their batteries every few months, you might have problems to find a new battery for your laptop in a few years from now. This is somewhat of a concern only if you anticipate using the -same laptop several years from now. If in doubt, buy a spare battery now - before it's out of stock. +same laptop several years from now. If in doubt, buy a spare battery now - +before it's out of stock. New batteries come in a discharged condition and must be fully charged before use. It is recommended that you fully charge and discharge the new battery two to four times to allow it to reach its maximum rated capacity. It is generally recommend that you perform an overnight charge (approximately -twelve hours) for this. Note: It is normal for a battery to become warm to the touch during charging and +twelve hours) for this. Note: It is normal for a battery to become warm to the +touch during charging and discharging. When charging the battery for the first time, the device may indicate that charging is complete after just 10 or 15 minutes. This is a normal with rechargeable batteries. New batteries are hard for the device to @@ -673,7 +927,8 @@ charge; they have never been fully charged and are not broken in. Sometimes the device's charger will stop charging a new battery before it is fully charged. If this happens, remove the battery from the device and then reinsert it. The charge cycle should begin again. This may happen several times during the -first battery charge. Don't worry; it's perfectly normal. Keep the battery healthy by fully +first battery charge. Don't worry; it's perfectly normal. Keep the battery +healthy by fully charging and then fully discharging it at least once every two to three weeks. Exceptions to the rule are Li-Ion batteries which do not suffer from the memory effect. @@ -685,7 +940,8 @@ High humidity and temperatures can cause the battery to deteriorate, so these should be avoided during storage. Do not remove and carry a battery pack in your pocket, purse, or other -container where metal objects (such as car keys or paper clips) could short-circuit the +container where metal objects (such as car keys or paper clips) could +short-circuit the battery terminals. The resulting excessive current flow can cause extremely high temperatures and may result in damage to the battery pack or cause fire or burns. @@ -695,17 +951,17 @@ or burns. Appendix -This document was lovingly handcrafted on a Dell Latitude C400 laptop running Slackware Linux 9.0, -in case anyone asks. +This document was lovingly handcrafted on a Dell Latitude C400 laptop +running Slackware Linux 9.0, in case anyone asks. -This document would not have been possible without the excellent material initially developed by Hanno Muller kontakt@hanno.de. +This document would not have been possible without the excellent +material initially developed by Hanno Muller +kontakt@hanno.de. -This material may be distributed only subject to the terms and conditions set forth in the -Open Publication License, v1.0 (available at http://www.opencontent.org/openpub/). +Copyright (c) 2003 David Lechnyr. Redistribution and use, with or without modification, are permitted provided that the copyright notice, this list of conditions and the following disclaimer be included. + +THIS DOCUMENTATION IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -This document is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.